




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第2課時對數(shù)的運算性質(zhì)對數(shù)的運算性質(zhì)(1)對數(shù)的運算性質(zhì)(1)當M,N同號時一定成立嗎?提示:不一定成立.如lg[(-5)×(-3)]有意義,而lg(-5),lg(-3)無意義.(2)如何證明對數(shù)的運算性質(zhì)(3).提示:設(shè)logaM=p,logaN=q.則由對數(shù)定義,得ap=M,aq=N;因為eq\f(M,N)=eq\f(ap,aq)=ap-q,所以p-q=logaeq\f(M,N);即logaeq\f(M,N)=logaM-logaN.1.辨析記憶(對的打“√”,錯的打“×”)(1)積、商的對數(shù)可以化為對數(shù)的和、差.(√)(2)loga(xy)=logax·logay.(×)提示:在a>0,a≠1,x>0,y>0的條件下loga(xy)=logax+logay.(3)log2(-3)2=2log2(-3).(×)提示:log2(-3)2=log232=2log23.2.計算log84+log82等于()A.log86B.8C.6D.1【解析】選D.log84+log82=log88=1.3.(教材練習改編)計算log510-log52等于()A.log58B.lg5C.1D.2【解析】選C.log510-log52=log55=1.類型一化簡求值(數(shù)學(xué)運算)1.計算log3(27×92)的結(jié)果為()A.8B.7C.6D.5【解析】選B.方法一:log3(27×92)=log327+log392=log333+log334=3log33+4log33=3+4=7;方法二:log3(27×92)=log3(33×34)=log337=7log33=7.2.計算:log345-log35=________.【解析】log345-log35=log3eq\f(45,5)=log39=log332=2.答案:23.計算:2log32-log3eq\f(32,9)+log38-5log53.【解析】2log32-log3eq\f(32,9)+log38-5log53=log3eq\b\lc\(\rc\)(\a\vs4\al\co1(4×\f(9,32)×8))-3=2-3=-1.1.利用對數(shù)運算性質(zhì)解題時的常用方法(1)“拆”:將積(商)的對數(shù)拆成兩對數(shù)之和(差).(2)“并”:將同底對數(shù)的和(差)并成積(商)的對數(shù).2.利用對數(shù)運算性質(zhì)解題時的注意點(1)拆項、并項不是盲目的,它們都是為求值而進行的.(2)對于常用對數(shù)式化簡問題應(yīng)注意充分運用性質(zhì)“l(fā)g5+lg2=1”解題.(3)注意平方差公式、完全平方式的靈活應(yīng)用.【補償訓(xùn)練】計算:lg52+eq\f(2,3)lg8+lg5·lg20+(lg2)2.【解析】原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=2+1=3.類型二帶附加條件的對數(shù)式求值(數(shù)學(xué)運算、邏輯推理)角度1由對數(shù)式求值【典例】設(shè)lg2=a,lg3=b,則eq\f(lg12,lg5)=()A.eq\f(2a+b,1+a)B.eq\f(a+2b,1+a)C.eq\f(2a+b,1-a)D.eq\f(a+2b,1-a)【思路導(dǎo)引】把lg12用lg2和lg3表示,把lg5用lg2表示.【解析】選C.因為lg2=a,lg3=b,所以eq\f(lg12,lg5)=eq\f(2lg2+lg3,1-lg2)=eq\f(2a+b,1-a).角度2由指數(shù)式求值【典例】已知a=2lg3,b=3lg2,比較a,b的大?。舅悸穼?dǎo)引】對a,b兩邊取對數(shù)進行判斷.【解析】因為lga=lg2lg3=lg3lg2,lgb=lg3lg2=lg2lg3.所以lga=lgb,所以a=b.取對數(shù)可以把乘方、開方、乘、除運算轉(zhuǎn)化為乘、除、加、減運算,即取對數(shù)起到把運算降級的作用,便于運算.1.若log32=a,則log38-2log36用a表示為()A.a(chǎn)-2B.3a-(1+a)2C.5a-2D.3a-2-a2【解析】選A.log38-2log36=3log32-2(log33+log32)=log32-2=a-2.2.已知2x=9,log2eq\f(8,3)=y(tǒng),則x+2y的值為________.【解析】由2x=9,得log29=x,所以x+2y=log29+2log2eq\f(8,3)=log29+log2eq\f(64,9)=log264=6.答案:63.已知log54=a,log53=b,用a,b表示log56=________.【解析】因為log54=a,log53=b,所以log56=log52+log53=eq\f(1,2)log54+log53=eq\f(1,2)a+b.答案:eq\f(1,2)a+b1.若a>0,a≠1,x>0,n∈N*,則下列各式:(1)(logax)n=nlogax;(2)(logax)n=logaxn;(3)logax=-logaeq\f(1,x);(4)eq\r(n,logax)=eq\f(1,n)logax;(5)eq\f(logax,n)=logaeq\r(n,x).其中正確的有()A.2個B.3個C.4個D.5個【解析】選A.根據(jù)對數(shù)的運算性質(zhì)logaMn=nlogaM(M>0,a>0,且a≠1)知(3)與(5)正確.2.(教材例題改編)計算log42+log48=()A.4B.2C.eq\f(1,2)D.eq\f(1,4)【解析】選B.log42+log48=log416=2.3.設(shè)10a=2,lg3=b,則eq\f(lg6,lg2)=()A.eq\f(b,a)B.eq\f(a+b,a)C.a(chǎn)bD.a(chǎn)+b【解析】選B.因為10a=2,所以lg2=a,所以eq\f(lg6,lg2)=eq\f(lg2+lg3,lg2)=eq\f(a+b,a).4.log816=________.【解析】log816=log2324=eq\f(4,3).答案:eq\f(4,3)5.計算:(1)log535-2log5eq\f(7,3)+log57-log51.8.(2)log2eq\r(\f(7,48))+log212-eq\f(1,2)log242-1.【解析】(1)原式=log5(5×7)-2(log57-log53)+log57-log5eq\f(9,5)=log55+log57-2log57+2log53+log57-2log53+log55=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【寧波】2025年浙大寧波理工學(xué)院公開招聘事業(yè)編制工作人員13人筆試歷年典型考題及考點剖析附帶答案詳解
- 2025建融金服(河南)科技信息服務(wù)有限公司甘肅分公司招聘30人筆試參考題庫附帶答案詳解
- 新型藻菌-膜生物反應(yīng)器實現(xiàn)微藻培養(yǎng)與廢水凈化高效耦合的研究
- 知識產(chǎn)權(quán)質(zhì)押財產(chǎn)抵押合同模板
- 餐廳員工勞動保護與職業(yè)健康合同
- 財務(wù)審計與代理業(yè)務(wù)委托合同樣本
- 江蘇省鎮(zhèn)江市丹陽市、南通市2024-2025學(xué)年高一下學(xué)期期中考試 歷史 PDF版含答案
- 百貨店門面租賃合同范本含品牌推廣費用分攤
- 手術(shù)室護理專案改善活動課件
- 針規(guī)的使用方法
- 鋼結(jié)構(gòu)廠房防腐施工方案
- 2024年重點單位消防全套臺賬檔案
- 2022版義務(wù)教育語文課程標準
- 湖北省名校2025屆高三下學(xué)期聯(lián)考物理試題含解析
- 咖啡廳食品安全管理制度
- 炸藥成型與裝藥的數(shù)字化與智能化
- 2024年江蘇省淮安市中考數(shù)學(xué)試卷
- 湖南省歷史高考試卷及解答參考(2025年)
- 2024至2030年中國皮膚清洗消毒液行業(yè)深度分析及發(fā)展趨勢研究預(yù)測報告
- 2025屆湖北省武漢市華中師大一附中初三4月中考模擬生物試題含解析
- 內(nèi)科胸腔鏡簡介
評論
0/150
提交評論