版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省曲靖市宣威市民族中學2025屆高三第六次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.3.已知,若方程有唯一解,則實數的取值范圍是()A. B.C. D.4.若直線的傾斜角為,則的值為()A. B. C. D.5.已知集合,,則為()A. B. C. D.6.關于函數,有下列三個結論:①是的一個周期;②在上單調遞增;③的值域為.則上述結論中,正確的個數為()A. B. C. D.7.已知復數,則的虛部是()A. B. C. D.18.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.9.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.510.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.11.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.12.函數在上單調遞減,且是偶函數,若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)二、填空題:本題共4小題,每小題5分,共20分。13.若復數滿足,其中為虛數單位,則的共軛復數在復平面內對應點的坐標為_____.14.已知的展開式中含有的項的系數是,則展開式中各項系數和為______.15.已知,(,),則=_______.16.已知內角的對邊分別為外接圓的面積為,則的面積為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數,求隨機變量的分布列及數學期望.18.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.19.(12分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數額,求隨機變量X的分布列和數學期望.20.(12分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設直線l與曲線C相交與M,N兩點,當,求的值.21.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.22.(10分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.2、B【解析】
設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.3、B【解析】
求出的表達式,畫出函數圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據,,解得舍去),則的范圍是,故選:.【點睛】本題考查函數的零點問題,考查函數方程的轉化思想和數形結合思想,屬于中檔題.4、B【解析】
根據題意可得:,所求式子利用二倍角的正弦函數公式化簡,再利用同角三角函數間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數公式,同角三角函數間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.5、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.6、B【解析】
利用三角函數的性質,逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調遞增,②錯誤;③因為,所以是偶函數,又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調遞增,所以,的值域為,③錯誤;綜上,正確的個數只有一個,故選B.【點睛】本題主要考查三角函數的性質應用.7、C【解析】
化簡復數,分子分母同時乘以,進而求得復數,再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數的乘法、除法運算,考查共軛復數的虛部,屬于基礎題.8、B【解析】
先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.9、A【解析】
由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.10、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.11、D【解析】
先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.12、B【解析】
根據題意分析的圖像關于直線對稱,即可得到的單調區(qū)間,利用對稱性以及單調性即可得到的取值范圍?!驹斀狻扛鶕}意,函數滿足是偶函數,則函數的圖像關于直線對稱,若函數在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數的性質,以及函數單調性的應用,有一定綜合性,屬于中檔題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數在復平面內對應點的坐標為,故答案為【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義準確計算是關鍵,是基礎題.14、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數是,解得,令得:展開式中各項系數和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.15、【解析】
先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考查數學運算的核心素養(yǎng).16、【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數學期望為.【點睛】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數學運算的能力,屬于中檔題.18、(1)(2)【解析】
(1)由不等式可得,討論與的關系,即可得到結果;(2)先解得不等式,由集合M中有且僅有一個整數,當時,則M中僅有的整數為;當時,則M中僅有的整數為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數為,所以,即;當,即時,M中僅有的整數為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結果求參數范圍,考查分類討論思想與運算能力.19、(1);(2)20.【解析】
(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數學期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機變量X的分布列為:X01020301P數學期望.【點睛】本題主要考查離散型隨機變量的分布列和數學期望,屬于中檔題.20、(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數方程為,(為參數),;曲線的直角坐標方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數方程為.曲線的直角坐標方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數方程代入曲線的直角坐標方程為得,,得,,21、(1)(2)分布列見解析,期望為20【解析】
利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度面料行業(yè)節(jié)能減排與環(huán)保技術合同4篇
- 二零二四年度幼兒園教師試用期幼兒綜合素質評價聘用合同2篇
- 二零二五年度農業(yè)產業(yè)化民營中小企業(yè)扶持資金使用合同3篇
- 二零二五年度牛羊草料環(huán)保處理與資源化利用合同3篇
- 二零二五版防水材料環(huán)保檢測合同2篇
- 二零二四年度智能工廠自動化設備采購與安裝合同3篇
- 2025年度電梯安裝與智能化運維服務合同8篇
- 2025版智能門禁系統(tǒng)與訪客管理系統(tǒng)集成合同4篇
- 二零二五年度中小企業(yè)信用擔保服務合同范本4篇
- 二零二五年度特色農產品品牌推廣合同2篇
- 2024年蘇州工業(yè)園區(qū)服務外包職業(yè)學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學生版-專題08 古詩詞名篇名句默寫
- 2024-2025學年人教版(2024)七年級(上)數學寒假作業(yè)(十二)
- 山西粵電能源有限公司招聘筆試沖刺題2025
- ESG表現(xiàn)對企業(yè)財務績效的影響研究
- 旅游活動碳排放管理評價指標體系構建及實證研究
- 2022年全國職業(yè)院校技能大賽-電氣安裝與維修賽項規(guī)程
- 小學德育養(yǎng)成教育工作分層實施方案
- 2024年湖南高速鐵路職業(yè)技術學院單招職業(yè)技能測試題庫附答案
- 2024年4月浙江省00015英語二試題及答案含評分參考
- 黑枸杞生物原液應用及產業(yè)化項目可行性研究報告
評論
0/150
提交評論