云南省西雙版納市2025屆高考仿真卷數(shù)學試題含解析_第1頁
云南省西雙版納市2025屆高考仿真卷數(shù)學試題含解析_第2頁
云南省西雙版納市2025屆高考仿真卷數(shù)學試題含解析_第3頁
云南省西雙版納市2025屆高考仿真卷數(shù)學試題含解析_第4頁
云南省西雙版納市2025屆高考仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省西雙版納市2025屆高考仿真卷數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.2.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.253.本次模擬考試結束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種4.已知展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-815.設、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立6.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.7.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.89.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.10.函數(shù)的大致圖像為()A. B.C. D.11.設,其中a,b是實數(shù),則()A.1 B.2 C. D.12.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,若函數(shù)有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.15.已知,滿足約束條件則的最小值為__________.16.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在開展學習強國的活動中,某校高三數(shù)學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數(shù)學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學期望.18.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.19.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前20.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.21.(12分)2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:研發(fā)費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數(shù)精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學期望.附:(1)相關系數(shù)(2),,,.22.(10分)如圖,在四棱錐中,底面是菱形,∠,是邊長為2的正三角形,,為線段的中點.(1)求證:平面平面;(2)若為線段上一點,當二面角的余弦值為時,求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

對復數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數(shù)的四則運算及虛部的概念,計算過程要注意.2、D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.3、B【解析】

利用分步計數(shù)原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題4、B【解析】

根據(jù)二項式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結果即可.【詳解】因為展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎題.5、D【解析】

取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當時,數(shù)列單調(diào)遞增,則;當時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.6、B【解析】

由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關鍵.7、B【解析】

列舉出循環(huán)的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.8、A【解析】

由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.9、D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.10、D【解析】

通過取特殊值逐項排除即可得到正確結果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11、D【解析】

根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎題.12、C【解析】

將圓,化為標準方程為,求得圓心為.根據(jù)圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)題意,求出的解得或,然后求出f(x)的導函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點睛】本題主要考查了函數(shù)與導函數(shù)的綜合,考查到了函數(shù)的零點,導函數(shù)的應用,以及數(shù)形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.14、①②③【解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.15、【解析】

畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內(nèi)部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數(shù)的最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.16、【解析】

用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y果數(shù),再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.18、(1)(2)見解析【解析】

(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數(shù)求切線方程的解法和根據(jù)導數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.19、(1)an=2n【解析】

(1)先設出數(shù)列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數(shù)列的和.【詳解】解:(1)設公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.20、(1);(2)【解析】

(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論