江蘇信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江蘇信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江蘇信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
江蘇信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
江蘇信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁江蘇信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時實現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達(dá)只能通過調(diào)整語音的音調(diào)來實現(xiàn)2、在強化學(xué)習(xí)中,智能體通過與環(huán)境進(jìn)行交互并根據(jù)獎勵來學(xué)習(xí)最優(yōu)策略。假設(shè)一個機器人要在一個復(fù)雜的迷宮環(huán)境中找到出口,每次到達(dá)出口會獲得高獎勵,碰到墻壁會獲得低獎勵。在這種情況下,以下哪種強化學(xué)習(xí)算法可能更適合訓(xùn)練機器人找到最優(yōu)路徑?()A.Q-learning算法,通過估計狀態(tài)動作值來選擇動作B.SARSA算法,基于當(dāng)前策略進(jìn)行學(xué)習(xí)C.策略梯度算法,直接優(yōu)化策略D.蒙特卡羅方法,通過多次試驗估計價值3、在人工智能的文本分類任務(wù)中,除了傳統(tǒng)的機器學(xué)習(xí)算法,深度學(xué)習(xí)方法也取得了很好的效果。以下關(guān)于文本分類中深度學(xué)習(xí)方法的描述,哪一項是不準(zhǔn)確的?()A.可以自動學(xué)習(xí)文本的特征表示B.對于長文本的處理能力優(yōu)于短文本C.不需要進(jìn)行特征工程D.訓(xùn)練數(shù)據(jù)量越大,效果一定越好4、人工智能中的多智能體系統(tǒng)是由多個相互作用的智能體組成的。假設(shè)在一個物流配送場景中,多個配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點,哪一項是不正確的?()A.智能體之間需要進(jìn)行有效的通信和協(xié)調(diào)B.單個智能體的決策會影響整個系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略5、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對少數(shù)類進(jìn)行過采樣,增加其數(shù)量B.對多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別6、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的藝術(shù)圖像,以下關(guān)于GAN訓(xùn)練過程的描述,哪一項是不準(zhǔn)確的?()A.生成器試圖生成逼真的圖像來欺騙判別器,判別器則努力區(qū)分真實圖像和生成的圖像B.訓(xùn)練過程中,生成器和判別器的性能會交替提升,直到達(dá)到平衡C.一旦GAN訓(xùn)練完成,生成器就能夠獨立生成高質(zhì)量的圖像,無需判別器的參與D.調(diào)整生成器和判別器的網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以影響生成圖像的質(zhì)量和多樣性7、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個特定領(lǐng)域構(gòu)建知識圖譜,以下關(guān)于數(shù)據(jù)來源的選擇,哪一項是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報告,確保知識的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗和知識,以及相關(guān)的數(shù)據(jù)庫和文檔D.隨機選擇一些數(shù)據(jù)來源,不進(jìn)行篩選和評估8、在人工智能的倫理和社會影響方面,存在許多值得關(guān)注的問題。假設(shè)人工智能系統(tǒng)在招聘過程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說法,哪一項是需要謹(jǐn)慎考慮的?()A.可以完全避免人為的偏見和不公平B.可能會因為數(shù)據(jù)偏差導(dǎo)致某些群體受到不公平對待C.其決策結(jié)果應(yīng)該無條件被接受和執(zhí)行D.不需要對其進(jìn)行監(jiān)管和評估9、人工智能中的自動推理技術(shù)在邏輯證明、問題求解等方面發(fā)揮著作用。假設(shè)我們要證明一個復(fù)雜的數(shù)學(xué)定理,使用自動推理系統(tǒng)。那么,關(guān)于自動推理,以下哪一項是不正確的?()A.可以基于邏輯規(guī)則和已知事實進(jìn)行推導(dǎo)B.能夠處理不確定和模糊的信息C.對于復(fù)雜問題可能會面臨計算復(fù)雜性的挑戰(zhàn)D.其結(jié)果的正確性完全依賴于輸入的前提和規(guī)則的準(zhǔn)確性10、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識,在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無法跨越不同的領(lǐng)域D.合理運用遷移學(xué)習(xí)可以提高模型的泛化能力和性能11、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機器學(xué)習(xí)算法12、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是13、在人工智能的優(yōu)化算法中,隨機梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用14、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個能夠自動生成新聞報道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本15、人工智能中的弱人工智能和強人工智能是兩個不同的概念。假設(shè)我們在討論人工智能的發(fā)展階段,以下關(guān)于弱人工智能和強人工智能的描述,哪一項是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強人工智能目前已經(jīng)廣泛應(yīng)用于各個領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強人工智能的關(guān)鍵在于計算能力16、人工智能中的機器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)等。假設(shè)要對一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動將數(shù)據(jù)分為不同的簇C.強化學(xué)習(xí)中的Q-Learning算法,通過與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對未標(biāo)記數(shù)據(jù)進(jìn)行分類17、人工智能中的強化學(xué)習(xí)算法可以用于訓(xùn)練機器人完成復(fù)雜的任務(wù)。假設(shè)一個機器人需要通過強化學(xué)習(xí)學(xué)會在不同地形上行走。以下關(guān)于強化學(xué)習(xí)訓(xùn)練機器人的描述,哪一項是不正確的?()A.機器人通過與環(huán)境的交互獲得獎勵或懲罰,從而調(diào)整自己的動作策略B.可以使用模擬環(huán)境進(jìn)行大量的訓(xùn)練,以減少在真實環(huán)境中的試驗成本和風(fēng)險C.強化學(xué)習(xí)訓(xùn)練出的機器人策略在不同的環(huán)境條件下都能保持最優(yōu)性能,無需進(jìn)一步調(diào)整D.合理設(shè)計獎勵函數(shù)對于引導(dǎo)機器人學(xué)習(xí)到期望的行為至關(guān)重要18、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來,以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡單快速,但對復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過度分割C.基于邊緣檢測的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對噪聲敏感D.以上圖像分割方法各有優(yōu)缺點,常常結(jié)合使用以提高分割效果19、在一個利用人工智能進(jìn)行天氣預(yù)報的系統(tǒng)中,為了提高預(yù)測的精度和時效性,以下哪個因素可能是需要重點關(guān)注和改進(jìn)的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計算效率C.模型的融合和集成D.以上都是20、在人工智能的語音情感識別中,以下哪個特征對于準(zhǔn)確判斷情感可能最具挑戰(zhàn)性?()A.語音的語調(diào)B.語音的語速C.說話人的口音D.背景噪音21、在深度學(xué)習(xí)中,BatchNormalization的作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是22、在人工智能的自動駕駛領(lǐng)域,感知模塊負(fù)責(zé)對周圍環(huán)境進(jìn)行理解。假設(shè)要實現(xiàn)對道路上行人的準(zhǔn)確檢測,以下哪種技術(shù)可能是最關(guān)鍵的?()A.激光雷達(dá)B.毫米波雷達(dá)C.攝像頭D.超聲波傳感器23、在一個利用人工智能進(jìn)行能源管理的系統(tǒng)中,例如優(yōu)化建筑物的能源消耗或電網(wǎng)的調(diào)度,以下哪個方面的考慮可能是至關(guān)重要的?()A.實時數(shù)據(jù)采集和處理B.精準(zhǔn)的預(yù)測模型C.多目標(biāo)優(yōu)化策略D.以上都是24、機器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對應(yīng)的期望輸出B.常見的監(jiān)督學(xué)習(xí)算法包括決策樹、支持向量機和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對于文本、圖像等非數(shù)值型數(shù)據(jù)無法處理25、人工智能中的情感計算旨在讓計算機理解和處理人類的情感。假設(shè)我們要開發(fā)一個能夠根據(jù)用戶的語音和文本判斷其情感狀態(tài)的系統(tǒng),以下關(guān)于情感計算的描述,哪一項是不正確的?()A.可以通過分析語音的語調(diào)、語速等特征來判斷情感B.文本情感分析通常依賴于情感詞典和機器學(xué)習(xí)算法C.情感計算的準(zhǔn)確性完全取決于數(shù)據(jù)的質(zhì)量和規(guī)模D.多模態(tài)情感分析結(jié)合了語音、文本、面部表情等多種信息源二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋人工智能在質(zhì)量控制和檢測中的方法。2、(本題5分)解釋策略梯度算法的思想。3、(本題5分)簡述人工智能在智能質(zhì)量追溯中的技術(shù)。4、(本題5分)談?wù)勅斯ぶ悄茉谌瞬耪衅钢械膽?yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)分析一個利用人工智能進(jìn)行智能書法作品市場定位系統(tǒng),探討其如何確定書法作品的市場定位。2、(本題5分)考察一個基于人工智能的智能音樂教育輔助系統(tǒng),討論其如何根據(jù)學(xué)生水平制定教學(xué)計劃。3、(本題5分)以某智能皮影戲表演優(yōu)化系統(tǒng)為例,探討人工智能在動作流暢性和劇情吸引力方面的作用。4、(本題5分)剖析某智能民間工藝品制作工藝改進(jìn)建議系統(tǒng)中人工智能的專業(yè)度和可行性。5、(本題5分)研究一個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論