版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
February2024
JenniferKing
CarolineMeinhardt
RethinkingPrivacyintheAIEra
PolicyProvocationsforaData-CentricWorld
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
Authors
JenniferKingisthePrivacyandDataPolicyFellowattheStanfordUniversity
InstituteforHuman-CenteredArtificialIntelligence(HAI).Aninternationally
recognizedexpertininformationprivacy,herresearchexaminesthepublic’s
understandingandexpectationsofonlineprivacyaswellasthepolicyimplicationsofemergingtechnologies,includingartificialintelligence.Herrecentresearch
exploresalternativestonoticeandconsent(withtheWorldEconomicForum),theimpactofCalifornia’snewprivacylaws,andmanipulativedesign(darkpatterns).
Shealsoco-directsthe
DarkPatternsTipLine
repositoryatStanford.PriortojoiningHAI,shewastheDirectorofConsumerPrivacyattheCenterforInternetandSocietyatStanfordLawSchoolfrom2018to2020.Dr.Kingcompletedherdoctoratein
informationmanagementandsystems(informationscience)attheUniversityofCalifornia,BerkeleySchoolofInformation.
CarolineMeinhardtisthepolicyresearchmanagerattheStanfordInstitutefor
Human-CenteredArtificialIntelligence(HAI),whereshedevelopsandoversees
policyresearchinitiatives.SheispassionateaboutharnessingAIgovernance
researchtoinformpoliciesthatensurethesafeandresponsibledevelopmentof
AIaroundtheworld—withafocusonresearchontheprivacyimplicationsofAI
development,theimplementationchallengesofAIregulation,andthegovernanceoflarge-scaleAImodels.PriortojoiningHAI,CarolineworkedasaChina-focusedconsultantandanalyst,managinganddeliveringin-depthresearchandstrategic
adviceregardingChina’sdevelopmentandregulationofemergingtechnologies
includingAI.SheholdsaMaster’sinInternationalPolicyfromStanfordUniversity,whereherresearchfocusedonglobalgovernancesolutionsforAI,andaBachelor’sinChineseStudiesfromtheUniversityofCambridge.
Acknowledgments
TheauthorswouldliketothankBrendaLeong,CobunZweifel-Keegan,JustinWest,KevinKlyman,andDanielZhangfortheirvaluablefeedback,NicoleTongandColeFordforresearchassistance,andJeaninaCasusi,JoeHinman,NancyKing,ShanaLynch,CarolynLehman,andMichiTurnerforpreparingthepublication.
Disclaimer
TheStanfordInstituteforHuman-CenteredArtificialIntelligence(HAI)isanonpartisanresearchinstitute,representingarangeofvoices.TheviewsexpressedinthisWhitePaperreflecttheviewsoftheauthors.
2
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
TableofContents
Authors2
Acknowledgments2
TableofContents3
ExecutiveSummary4
Chapter1:Introduction5
Chapter2:DataProtectionandPrivacy:
KeyConceptsandRegulatoryLandscape7
a.FairInformationPracticePrinciples:
Theframeworkbehinddataprotectionandprivacy9
b.GeneralDataProtectionRegulation:
The“globalstandard”fordataprotection10
c.U.S.StatePrivacyLaws:Fillingthefederalprivacyvacuum12
d.PredictiveAIvs.GenerativeAI:Aninflectionpoint
fordataprotectionregulation14
Chapter3:ProvocationsandPredictions17
a.DataisthefoundationofAIsystems,
whichwilldemandevergreateramountsofdata17
b.AIsystemsposeuniqueriskstobothindividualand
societalprivacythatrequirenewapproachestoregulation19
c.Dataprotectionprinciplesinexistingprivacylaws
willhaveanimplicit,butlimited,impactonAIdevelopment22
d.TheexplicitalgorithmicandAI-basedprovisionsin
existinglawsdonotsufficientlyaddressprivacyrisks25
e.Closingthoughts29
Chapter4:SuggestionsforMitigatingthePrivacyHarmsofAI31
Suggestion1:Denormalizedatacollectionbydefault33
Suggestion2:FocusontheAIdatasupplychainto
improveprivacyanddataprotection36
Suggestion3:Flipthescriptonthemanagementofpersonaldata41
Chapter5:Conclusion45
Endnotes46
3
4
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
ExecutiveSummary
Inthispaper,wepresentaseriesofargumentsandpredictionsabouthowexistingandfutureprivacyanddataprotectionregulationwillimpactthedevelopmentanddeploymentofAIsystems.
DataisthefoundationofallAIsystems.Goingforward,AIdevelopmentwillcontinuetoincreasedevelopers’hungerfortrainingdata,fuelinganevengreaterracefordataacquisitionthanwehavealreadyseeninpastdecades.
Largelyunrestraineddatacollectionposesuniqueriskstoprivacythatextendbeyondtheindividuallevel—theyaggregatetoposesocietal-levelharmsthatcannotbeaddressedthroughtheexerciseofindividualdatarightsalone.
Whileexistingandproposedprivacylegislation,groundedinthegloballyacceptedFairInformationPractices
(FIPs),implicitlyregulateAIdevelopment,theyarenotsufficienttoaddressthedataacquisitionraceaswellastheresultingindividualandsystemicprivacyharms.
Evenlegislationthatcontainsexplicitprovisionsonalgorithmicdecision-makingandotherformsofAIdoesnotprovidethedatagovernancemeasuresneededtomeaningfullyregulatethedatausedinAIsystems.
WepresentthreesuggestionsforhowtomitigatetheriskstodataprivacyposedbythedevelopmentandadoptionofAI:
1.Denormalizedatacollectionbydefaultbyshiftingawayfromopt-outtoopt-indatacollection.
Datacollectorsmustfacilitatetruedataminimizationthrough“privacybydefault”strategiesandadopttechnicalstandardsandinfrastructureformeaningfulconsentmechanisms.
2.FocusontheAIdatasupplychaintoimproveprivacyanddataprotection.Ensuringdataset
transparencyandaccountabilityacrosstheentirelifecyclemustbeafocusofanyregulatorysystemthataddressesdataprivacy.
3.Flipthescriptonthecreationandmanagementofpersonaldata.Policymakersshouldsupportthedevelopmentofnewgovernancemechanismsandtechnicalinfrastructure(e.g.,dataintermediariesanddatapermissioninginfrastructure)tosupportandautomatetheexerciseofindividualdatarightsand
preferences.
5
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
Chapter1:Introduction
Intheopeningmonthsof2024,artificialintelligence
(AI)issquarelyinthesightsofregulatorsaroundthe
globe.TheEuropeanUnionissettofinalizeitsAIAct
laterthisyear.Otherpartsoftheworld,fromtheUnitedKingdomtoChina,arealsocontemplatingand,insomecasesalreadyimplementing,wide-rangingAIregulation.IntheUnitedStates,arecentmilestoneExecutive
OrderonAImarkedtheclearestsignalyetthatthe
Bidenadministrationispoisedtotakeacomprehensive
approachtoAIgovernance.1Withfederallegislationto
regulateAIyettopass,agrowingnumberoffederal
agenciesandstatelegislatorsareclarifyinghowexistingregulationrelatestoAIwithintheirjurisdictionalareas
andproposingAI-specificregulation.2
WhilemuchofthediscussionintheAIregulatory
spacehascenteredondevelopingnewlegislationtodirectlyregulateAI,therehasbeencomparativelylittlediscourseonthelawsandregulationsthatalready
impactmanyformsofcommercialAI.Inthiswhite
paper,wefocusontheintersectionofAIregulation
withtwospecificareas:privacyanddataprotection
legislation.TheconnectivetissuebetweenprivacyandAIisdata:NearlyallformsofAIrequirelargeamountsoftrainingdatatodevelopclassificationordecisionalcapabilities.WhetherornotanAIsystemprocesses
orrendersdecisionsaboutindividuals,ifasystem
includespersonalinformation,particularlyidentifiablepersonalinformation,aspartofitstrainingdata,itislikelytobesubject—atleastinpart—toprivacyanddataprotectionregulations.
Wemakeasetofargumentsandpredictionsabout
howexistingandfutureprivacyanddataprotection
regulationsintheUnitedStatesandtheEUwillimpactthedevelopmentanddeploymentofAIsystems.We
startwiththefundamentalassumptionthatAIsystemsrequiredata—massiveamountsofit—fortraining
purposes.Itisthisneedfordata,asbestevidencedbydata-hungrygenerativeAIsystemssuchasChatGPT,thatwepredictwillfuelanevengreaterracefordataacquisitionthanwe’vewitnessedoverthelastdecadesofthe“BigData”era.Thisneedwillinturnimpactbothindividualandsocietalinformationprivacy—notjust
throughthedemandfordata,butalsobytheimpactsthisneedwillhaveonspecificissuessuchasconsent,provenance,andtheentiredatasupplypipelineandlifecyclemoregenerally.3
WemoveontoexaminingAI’suniquerisksto
consumerandpersonalprivacy,which—unlikemany
technology-fueledprivacyharmsthatprimarilyimpactindividuals—aggregatetoposesocietal-levelrisks
thatexistingregulatoryprivacyframeworksarenot
designedtoaddress.Wearguethatexistinggovernanceapproaches,whicharebasedpredominantlyonthe
globallyacceptedFairInformationPractices(FIPs),
willnotbesufficienttoaddressthesesystemicprivacyrisks.Finally,weclosewithsuggestedsolutionsfor
mitigatingtheseriskswhilealsoofferingnewdirectionsforregulationinthisarea.
What’satStake:TheFutureof
BothPrivacyandAI
DataisakeycomponentforallAIsystems—todate,themostsignificantimprovementsinAIsystems
havebeentiedtoaccesstoverylargeamountsof
trainingdata.Thisfactdoesnotnecessarilymean
thatalladvancementsinAIwillrequiremassive
amountsofdata;aswediscusslater,someresearchersareobservingqualityversusquantitytrade-offs
6
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
thatindicatemoremaynotreliablymeanbetter.
Regardless,wearepresentlyataninflectionpointwherethereisconsiderablepressureforcompaniestobuildmassivetrainingdatasetstomaintaintheircompetitiveadvantage.
Aprimaryconcernmotivatingthispaperisthatdespitethefactthatexistingandproposedprivacyanddata
protectionlawsonbothsidesoftheAtlanticwillhaveanimpactonAI,theywillnotsufficientlyregulate
thedatasourcesthatAIsystemsrequireinaway
thatwillsubstantivelypreserve,orevenimprove,our
dataprivacy.Inthispaper,weexploreseveralrelatedconcerns:
1.Theframeworkthatunderliesdataprotectionlawshasweaknessesthatwillnotgiveindividualsthetoolstheyneedtopreservetheirdataprivacyas
AIadvances;
2.Italsofailstoaddresssocietal-levelprivacyrisks;
3.PolicymakersmustexpandthescopeofhowweapproachprivacyanddataprotectiontoaddresstheseweaknessesandbolsterdataprivacyinanincreasinglyAIdominantworld.
Westartfromtheassumptionthatformostofus
thecurrentstateofourdataprivacyrangesfrom
suboptimaltodismal.IntheUnitedStates,pollshaveshownthatthepubliclargelyfeelsasiftheyhavenocontroloverthedatathatiscollectedaboutthem
online;4thatthebenefitstheyreceiveinexchangefor
theirdataarenotalwaysworththebargainoffree
access;andthatinmostdatarelationships,consumershavenoabilitytonegotiatemorefavorableterms—
andinmanyinstances,believetheyarelockedinorhavefewifanyalternatives.5
Inshort,aswemovetowardafutureinwhichAI
developmentcontinuestoincreasedemandsfor
data,dataprotectionregulationthatatbestmaintainsthestatusquodoesnotinspireconfidencethatthe
datarightswehavewillpreserveourdataprivacy
asthetechnologyadvances.Infact,webelieve
thatcontinuingtobuildanAIecosystematopthis
foundationwilljeopardizewhatlittledataprivacywehavetoday.
Thispaperfocusesonthecoreissuesthatwebelieverequirethemostattentiontoaddressthisstateof
affairs.Itdoesnotclaimtoaddressorsolveeverything.Butwedobelievethatiftheseissuesaren’tsufficientlyacknowledgedandaddressedthroughregulationandenforcement,weleaveourselvesopentoasituation
whereprivacyprotectioncontinuestodeteriorate.
Therearemanyworriesattachedtohowourworld
willchangeasitcontinuestoembraceAI.Concernsrelatedtobiasanddiscriminationhavealready
generatedextensivedebateanddiscussion,andwearguethatasubstantiallossofdataprivacyisanothermajorriskthatdeservesourheightenedconcern.
7
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
Chapter2:DataProtectionandPrivacy:
KeyConceptsandRegulatoryLandscape
ThelasttwoyearshaveseengroundbreakingadvancesinAI,aperiodinwhichgenerativeAItoolsbecame
widelyavailable,inspiringandalarmingmillionsof
peoplearoundtheworld.Largelanguagemodels
(LLMs)suchasGPT-4,PaLM,andLlama,aswellas
AIimagegenerationsystemssuchasMidjourneyandDALL-E,havemadeatremendouspublicsplash,whilemanyotherlessheadline-grabbingformsofAIalso
continuedtoadvanceatbreakneckspeed.
WhilerecognizingtherecentdominanceofLLMsinpublicdiscourse,inthispaperweconsiderthedataprivacyandprotectionimplicationsofawiderarrayofAIsystems,definedmorebroadlyas“engineeredormachine-basedsystem[s]thatcan,foragivensetofobjectives,generateoutputssuchaspredictions,recommendations,ordecisionsinfluencingrealor
virtualenvironments.”6Forexample,weconsidera
rangeofpredictiveAIsystems,suchasthosebasedonmachinelearning,thatanalyzevastamountsof
datatomakeclassificationsandpredictions,rangingfromfacialrecognitionsystemstohiringalgorithms,criminalsentencingalgorithms,behavioraladvertisingandprofiling,andemotionrecognitiontools,to
nameafew.Thesesystemsoperatewithvarying
levelsofautonomy,with“automateddecision-
making”referringtoAIsystemsmakingdecisions(suchasawardingaloanorhiringanewemployee)
withoutany,orminimal,humaninvolvement.7
WhilegenerativeAIsystemsalsorelyonpredictive
processes,thosesystemsultimatelyfocusoncreatingnewcontentrangingfromtexttoimages,video,andaudioastheiroutput.
Whilesomepolicymakersarekeentodemonstratethattheyareassuagingthepublic’sgrowingconcerns
abouttherapiddevelopmentand
deploymentofAIbyintroducingnew
legislation,thereisagrowingdebate
overwhetherexistinglawsprovidesufficientprotectionandoversightofAIsystems.
Inresponsetothesewidelypublicizeddevelopments,
bothpolicymakersandthegeneralpublichave
calledforregulatingAItechnologies.Since2020,countriesaroundtheworldhavebegunpassing
AI-specificlegislation.8WhiletheEUfinalizesthe
parametersofitsAIAct,thebloc’sattempttoprovideoverarchingregulationofAItechnologies,theUnitedStatespresentlylacksageneralizedapproachtoAI
regulation,thoughmultiplefederalagencieshavereleasedpolicystatementsassertingtheirauthorityoverAIsystemsthatproduceoutputsinviolation
ofexistinglaw,suchascivilrightsandconsumer
protectionstatutes.9SeveralU.S.statesand
municipalitieshavealsotackledgeneralconsumerregulationofAIsystems.10
8
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
Whilesomepolicymakersarekeentodemonstrate
thattheyareassuagingthepublic’sgrowingconcernsabouttherapiddevelopmentanddeploymentofAI
byintroducingnewlegislation,thereisagrowing
debateoverwhetherexistinglawsprovidesufficient
protectionandoversightofAIsystems.Aswediscussinthiswhitepaper,privacyanddataprotectionlaws
intheUnitedStatesandtheEUalreadydothework
ofregulatingsome—thoughnotall—aspectsofAI.
Whethertheseexistinglaws,andproposedonesbasedontheseframeworks,areadequatetoanticipateand
respondtoemergentformsofAIwhilealsoaddressingprivacyrisksandharmsisaquestionwewilladdresslaterinthispaper.
Beforewedelveintothedetailsofourarguments,weprovideabriefoverviewofthepresentstateofdataprotectionandprivacyregulationsintheEUandtheUnitedStatesthatimpactAIsystems,startingwiththefoundationalFairInformationPractices(FIPs).Thosefamiliarwiththeseregulationsmaywishtoskipaheadtothenextchapter.
DataPrivacyandDataProtection
Dataprivacyanddataprotectionaresometimesusedinterchangeablyincasualconversation.Whilethesetermsarerelatedandhavesomeoverlap,theydifferinsignificantways.
Dataprivacyisprimarilyconcernedwithwhohasauthorizedaccesstocollect,process,and
potentiallyshareone’spersonaldata,andtheextenttowhichonecanexercisecontroloverthataccess,includingbyoptingoutofdatacollection.Theterm’sscopeisfairlybroad,asitpertainsnotjustto
personaldatabuttoanykindofdatathat,ifaccessedbyothers,wouldbeseenasinfringingonone’srighttoaprivatelifeandpersonalautonomy.
Privacyisoftendescribedintermsofpersonalcontroloverone’sinformation,thoughthisconceptionhasbeenchallengedbytheincreasinglossofcontrolthatmanyhaveovertheirdata.Butitisthis
notionofpersonalcontrolthatunderliesbothexistingprivacyregulationsandframeworks.Whatis
considered“private”isalsocontextuallycontingent,inthatdatasharedinonecontextmaybeviewedasappropriatebyanindividualordatasubject(e.g.,sharingone’srealtimelocationdatawithafriend)butnotinanother(e.g.,athirdpartycollectingone’srealtimelocationdataandusingitforadvertisingpurposeswithoutexplicitpermission).Therelationalnatureofdatahasalsochallengedtheideaof
privacyaspersonalcontrol,asdatathatissocialinnature(e.g.,sharedsocialmediaposts)ordatathatcanrevealbothbiologicaltiesandethnicidentities(e.g.,geneticdata)continuetogrow.
9
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
DataPrivacyandDataProtection(cont’d)
Dataprotectionreferstotheactofsafeguardingindividuals’personalinformationusingasetof
proceduralrights,whichincludesensuringthatdataisprocessedfairly,forspecifiedpurposes,and
collectedonthebasisofoneofsixacceptedbasesforprocessing.11Consentisthestrictestbasisand
allowsindividualstowithdrawitafterthefact.Bycontrast,legitimateinterestprovidesthegreatest
latitude—thislegalgroundforprocessingdataallowsprocessorstojustifydataprocessingonthebasisofthisdatabeingneededtocarryouttasksrelatedtotheirbusinessactivity.Dataprocessorsmuststillrespectindividuals’fundamentaldataprotectionrights,suchasprovidingnoticewhendataiscollected,givingaccesstoone’scollectedinformation,providingthemeanstocorrecterrors,delete,ortransferit(dataportability)tootherprocessors,andaffordingtherighttoobjecttotheprocessingitself.Butthereisabiastowardacceptingasagiventhecollectibilityofsomeformsofpersonaldatabydefault.
TheEUformallydistinguishesbetweenpersonalprivacy(i.e.,respectforanindividual’sprivatelife)and
dataprotection,enshriningeachinitsEuropeanCharterofFundamentalRights.Nevertheless,there
areareasofoverlapandtheconceptscomplementeachother.Whendataprotectionprinciplesdonotapplybecausethecollectedinformationisnotpersonaldata(e.g.,anonymizedbodyscannerdata),thefundamentalrighttoprivacyappliesasthecollectionofbodilyinformationaffectsaperson’sindividualautonomy.Conversely,dataprotectionprinciplescanensurelimitsonpersonaldataprocessing,evenwhensuchprocessingisnotthoughttoinfringeuponprivacy.12
a.FairInformationPractice
Principles:Theframework
behinddataprotectionand
privacy
Mostmodernprivacylegislation,atitscore,is
basedontheFairInformationPractices(FIPs),a
50-plus-year-oldsetofprinciplesthatareacceptedaroundtheglobeasthefundamentalframeworkforprovidingindividualswithdueprocessrightsfortheir
personaldata.13ProposedasaU.S.federalcodeoffair
informationpracticesforautomatedpersonaldatasystemsintheearly1970s,theFIPsintroducedfive
safeguardrequirementsregardingpersonalprivacyasameansofensuring“informationaldueprocess.”14Theyfocusontheobligationsofrecord-keeping
organizationstoallowindividualstoknowabout,
preventalternativeusesof,andcorrectinformation
collectedaboutthem.15AspolicyexpertMark
MacCarthydescribes,“Allthesemeasuresworkedtogetherasacoherentwholetoenforcetherightsofindividualstocontrolthecollectionanduseofinformationaboutthemselves.”16
Ratherthanframinginformationprivacyasa
fundamentalhumanright,asboththeUnitedNationsUniversalDeclarationofHumanRightsandthe
10
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
EuropeanCharterofFundamentalRightsdowitha
moregeneralconceptionofprivacy,theFIPsoutline
asetofrulesandobligationsbetweentheindividual
(datasubject)andtherecord-keeper(dataprocessor).17TheFIPsweredraftedaroundacoreassumptionthatthestatehasalegitimateneedtocollectdataabout
itscitizensforadministrativeandrecord-keepingpurposes.18Thisassumption—thatdatacollectionisnecessaryandappropriatefortheworkingsof
themodernstatebutmustbedonefairlyandwithproceduralsafeguardsinplace—wasincorporatedintosubsequentrevisionsoftheFIPs,evenastheywereincreasinglyappliedtotheprivatesector.
Themostinternationallyinfluentialversion,developed
bytheOrganisationforEconomicCooperation
andDevelopment(OECD)in1980andamendedin
2013,consolidatesandexpandstheoriginalFIPs
intoeightprinciplescoveringcollectionlimitation,
dataquality,purposespecification,uselimitation,
securitysafeguards,openness,individualparticipation,andaccountability.19Theguidelinesreflectabroad
internationalconsensusonhowtoapproach
privacyprotectionthathastranslatedintoapolicy
convergencearoundenshriningtheFIPsasacorepartofinformationprivacylegislationaroundtheworld.20
Despitehavingbeenconceivedlongbeforethe
emergenceofthecommercialinternet,letalone
socialmediaplatformsandgenerativeAItools,core
componentsoftheFIPs,suchasdataminimization
andpurposelimitation21,directlyimpacttoday’sAI
systemsbylimitinghowbroadlycompaniescan
repurposedatacollectedforonecontextorpurposetocreateortrainnewAIsystems.TheEU’sGeneralDataProtectionRegulation(GDPR),aswellasCalifornia’s
privacyregulationsandtheproposedAmericanDataPrivacyandProtectionAct(ADPPA),reliesheavilyontheseprinciples.Theseregulations’attemptstoclarify
TheFIPsweredraftedarounda
coreassumptionthatthestatehasalegitimateneedtocollectdataaboutitscitizensforadministrativeand
record-keepingpurposes.
theapplicationoftheFIPstoprivacycontrolsamid
exponentiallyincreasingvolumesofonlineconsumersandcommercialdatashedfurtherlightontheimpactofprivacyregulationonAI.
b.GeneralDataProtectionRegulation:The“global
standard”fordataprotection
Passedin2016andineffectasof2018,theGeneralDataProtectionRegulationistheEU’sattemptto
bothupdatethe1995DataProtectionDirectiveandharmonizethepreviouspatchworkoffragmentednationaldataprivacyregimesacrossEUmember
countriesandtoenablestrongerenforcementof
Europeans’datarights.22Atitscore,theGDPRis
centeredonpersonaldata,whichisdefinedas“any
informationrelatingtoanidentifiedoridentifiable
naturalperson.”23Itgrantsindividuals(“datasubjects”)rightsregardingtheprocessingoftheirpersonaldata,suchastherighttobeinformedandalimitedrighttobeforgotten,andguideshowbusinessescanprocesspersonalinformation.Itisarguablythemostsignificantdataprotectionlegislationintheworldtoday,spurringcopycatlegislationandimpactingtheframingofdataprotectionaroundtheglobe.AsaresultoftheGDPR’sdirectapplicabilitytoAIanditsdominanceacross
11
stanforduniversityHuman-centered
ArtificialIntelligence
WhitePaper
RethinkingPrivacyintheAIEra
theglobe,dataprotectionandprivacyconcernsarelargelyabsentfromtheEU’sAIAct.
TheGDPRcontainsseveralprovisionsthatapply
toAIsystems,eventhoughitdoesnotspecifically
includetheterm“artificialintelligence.”Instead,
Article22providesprotectionstoindividualsagainstdecisions“basedsolelyonautomatedprocessing”ofpersonaldatawithouthumanintervention,alsocalledautomateddecision-making(ADM).24Itenshrines
therightofindividualsnottobesubjecttoADM
wherethesedecisionscouldproduceanadverse
legalorsimilarlysignificanteffectonthem.Giventhewides
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年混凝土攪拌樁施工承包協(xié)議版B版
- 承包合同范文合集五篇
- 主管工作計(jì)劃模板匯編5篇
- 幼兒園秋季教學(xué)工作計(jì)劃5篇
- 立項(xiàng)報(bào)告范本范文
- 人事助理的實(shí)習(xí)報(bào)告匯編10篇
- 幼兒園會(huì)計(jì)工作計(jì)劃2022年
- 體育課籃球運(yùn)球教案范文
- 關(guān)于關(guān)于個(gè)人述職報(bào)告合集6篇
- 酒店員工的辭職報(bào)告書15篇
- 陜西省重點(diǎn)中學(xué)2022-2023學(xué)年高二上學(xué)期期末考試英語試卷(含答案)
- 醫(yī)院耗材管理委員會(huì)制度
- 二次函數(shù)大單元整體設(shè)計(jì)課件 【大單元教學(xué)】 學(xué)情分析指導(dǎo) 九年級(jí)數(shù)學(xué)北師大版下冊
- pcb多層板退錫工藝的研究進(jìn)展
- 2023-2024學(xué)年江蘇省蘇州市數(shù)學(xué)六年級(jí)第一學(xué)期期末統(tǒng)考模擬試題含答案
- 梅花落唐楊炯
- 補(bǔ)寫句子公開課市公開課一等獎(jiǎng)省課獲獎(jiǎng)?wù)n件
- 《詩經(jīng)》簡介 完整版PPT
- 部編版七年級(jí)語文上冊(課本全冊)課后習(xí)題參考答案
- 2022-2023學(xué)年成都市高二上英語期末考試題(含答案)
- 大學(xué)英語語法專項(xiàng)練習(xí)題及答案
評(píng)論
0/150
提交評(píng)論