2025屆浙江省湖州、衢州、麗水三地市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁(yè)
2025屆浙江省湖州、衢州、麗水三地市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁(yè)
2025屆浙江省湖州、衢州、麗水三地市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁(yè)
2025屆浙江省湖州、衢州、麗水三地市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁(yè)
2025屆浙江省湖州、衢州、麗水三地市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆浙江省湖州、衢州、麗水三地市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.2.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.3.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.4.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.5.已知復(fù)數(shù)(為虛數(shù)單位),則下列說(shuō)法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.6.我們熟悉的卡通形象“哆啦A夢(mèng)”的長(zhǎng)寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米7.若向量,則()A.30 B.31 C.32 D.338.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對(duì)任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.9.已知函,,則的最小值為()A. B.1 C.0 D.10.已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]12.設(shè)集合、是全集的兩個(gè)子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_(kāi)______.14.已知數(shù)列是等比數(shù)列,,則__________.15.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線與拋物線交于點(diǎn),以線段為直徑的圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_______.16.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足對(duì)任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.18.(12分)已知橢圓的右焦點(diǎn)為,直線被稱作為橢圓的一條準(zhǔn)線,點(diǎn)在橢圓上(異于橢圓左、右頂點(diǎn)),過(guò)點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).(1)求證:.(2)若點(diǎn)在軸的上方,當(dāng)?shù)拿娣e最小時(shí),求直線的斜率.附:多項(xiàng)式因式分解公式:19.(12分)如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.20.(12分)已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.21.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.22.(10分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出曲線的極坐標(biāo)方程;(2)點(diǎn)是曲線上的一點(diǎn),試判斷點(diǎn)與曲線的位置關(guān)系.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由,化簡(jiǎn)得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼?,所以,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡(jiǎn),余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.2、D【解析】

過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)?,,所以,即過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.3、C【解析】

由程序語(yǔ)言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過(guò)程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題4、C【解析】程序在運(yùn)行過(guò)程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.5、D【解析】

利用的周期性先將復(fù)數(shù)化簡(jiǎn)為即可得到答案.【詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯(cuò)誤;在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第二象限,B錯(cuò)誤;的共軛復(fù)數(shù)為,C錯(cuò)誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識(shí),是一道基礎(chǔ)題.6、B【解析】

根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國(guó)文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.7、C【解析】

先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對(duì)任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問(wèn)題.9、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.10、D【解析】

先將所求問(wèn)題轉(zhuǎn)化為對(duì)任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過(guò)原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.11、B【解析】

作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過(guò)與直線平行的直線斜率為-1,∴.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.12、C【解析】

作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時(shí).故選:C.【點(diǎn)睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)為的中點(diǎn),根據(jù)弦長(zhǎng)公式,只需最小,在中,根據(jù)余弦定理將表示出來(lái),由,得到,結(jié)合弦長(zhǎng)公式得到,求出點(diǎn)的軌跡方程,即可求解.【詳解】設(shè)為的中點(diǎn),在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、相交弦長(zhǎng)的最值,解題的關(guān)鍵求出點(diǎn)的軌跡方程,考查計(jì)算求解能力,屬于中檔題.14、【解析】

根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.15、【解析】

由題意求出以線段AB為直徑的圓E的方程,且點(diǎn)D恒在圓E外,即圓E上存在點(diǎn),使得,則當(dāng)與圓E相切時(shí),此時(shí),由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點(diǎn)恒在圓外.圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),即圓上存在點(diǎn),使得,設(shè)過(guò)點(diǎn)的兩直線分別切圓于點(diǎn),要滿足題意,則,所以,整理得,解得,故實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了直線與拋物線位置關(guān)系的應(yīng)用,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中準(zhǔn)確求得圓E的方程,把圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),轉(zhuǎn)化為圓上存在點(diǎn),使得是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題。16、【解析】

因?yàn)?,所?因?yàn)?,所以,又,所以,所?.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項(xiàng)建立方程,求出公差可得.(2)利用的通項(xiàng)公式,求出,用錯(cuò)位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項(xiàng),,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式及錯(cuò)位相減法求和.(1)解決等差數(shù)列通項(xiàng)的思路(1)在等差數(shù)列中,是最基本的兩個(gè)量,一般可設(shè)出和,利用等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式列方程(組)求解即可.(2)錯(cuò)位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用錯(cuò)位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式18、(1)證明見(jiàn)解析(2)【解析】

(1)由得令可得,進(jìn)而得到,同理,利用數(shù)量積坐標(biāo)計(jì)算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點(diǎn)的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,,.可得點(diǎn)的坐標(biāo)為.當(dāng)時(shí),可求得點(diǎn)的坐標(biāo)為,,.有,故有.(2)若點(diǎn)在軸上方,因?yàn)椋杂?,由?)知①因?yàn)闀r(shí).由(1)知,由函數(shù)單調(diào)遞增,可得此時(shí).②當(dāng)時(shí),由(1)知令由,故當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增:當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時(shí),可求得.由①②知,若點(diǎn)在軸上方,當(dāng)?shù)拿娣e最小時(shí),直線的斜率為.【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運(yùn)算求解能力,是一道難題.19、(1).(2).【解析】分析:(1)直接建立空間直角坐標(biāo)系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求解即可;(2)先分別得出兩個(gè)面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點(diǎn),,,分別為軸,軸,軸建立如圖空間直角坐標(biāo)系,由,,得,,,,,,則,,,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為.()由()可得,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故二面角的余弦值為.點(diǎn)睛:考查空間立體幾何的線面角,二面角問(wèn)題,一般直接建立坐標(biāo)系,結(jié)合向量夾角公式求解即可,但要注意坐標(biāo)的正確性,坐標(biāo)錯(cuò)則結(jié)果必錯(cuò),務(wù)必細(xì)心,屬于中檔題.20、(1)見(jiàn)解析;(2).【解析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過(guò)點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒(méi)有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因?yàn)槠矫?,平面,所以平面;?)在圖2中,過(guò)點(diǎn)作,垂足為,連接,,因?yàn)椋?,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點(diǎn)在底面上的投影必落在直線上;記為點(diǎn)在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因?yàn)?,所以,因此,,故;因?yàn)?,所以,因此,故,所?即直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于常考題型.21、(1)①;②8079;(2).【解析】

(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論