




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東省滕州實驗中學高三3月份第一次模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關(guān)于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.43.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.4.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.5.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.6.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.7.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.8.函數(shù)圖像可能是()A. B. C. D.9.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值10.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為()A. B. C. D.11.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-512.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上到其焦點距離為5的點有_______個.14.在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為___________.15.已知是夾角為的兩個單位向量,若,,則與的夾角為______.16.已知集合,,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.18.(12分)已知函數(shù).(1)當時,求曲線在點的切線方程;(2)討論函數(shù)的單調(diào)性.19.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)當時,解不等式;(2)當時,不等式恒成立,求實數(shù)的取值范圍.21.(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項數(shù)列的前項和為,若,且.①求數(shù)列的通項公式;②求證:.22.(10分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設(shè)的中垂線在軸上的截距為,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.2、B【解析】
對函數(shù)化簡可得,進而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關(guān)于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.3、B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.4、D【解析】
根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結(jié)合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結(jié)合的方式來進行求解.5、A【解析】
先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.6、D【解析】
直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.7、D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學生對這些知識的理解掌握水平.8、D【解析】
先判斷函數(shù)的奇偶性可排除選項A,C,當時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.9、D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.10、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功11、C【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎(chǔ)題.12、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
設(shè)符合條件的點,由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點,則,所以符合條件的點有2個.故答案為:2【點睛】本題考查拋物線的定義的應用,考查拋物線的焦半徑.14、【解析】
點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.15、【解析】
依題意可得,再根據(jù)求模,求數(shù)量積,最后根據(jù)夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數(shù)量積的運算律,以及夾角的計算,屬于基礎(chǔ)題.16、【解析】
由于,,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最小值為.(3)時,面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設(shè)為,令,則,即可設(shè),利用導函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進而求解;(3)由題,,則,設(shè),,利用導函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設(shè),,則,記,則,令,則,當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設(shè),則,設(shè),則,令,,所以當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,故當,即時,面積取最小值為【點睛】本題考查三角函數(shù)定義的應用,考查利用導函數(shù)求最值,考查運算能力.18、(1);(2)當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】
(1)根據(jù)導數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關(guān)系進而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當時,,所以當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減;②當時,,所以當和時,;當時,,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當時,,所以在上恒成立.所以在上單調(diào)遞增;④當時,,所以和時,;時,.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減.【點睛】本題主要考查了導數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點,再根據(jù)極值點的大小關(guān)系分類討論即可.屬于??碱}.19、【解析】試題分析:先將問題“存在實數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉(zhuǎn)化與化歸的數(shù)學思想的運用.20、(1);(2).【解析】
(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉(zhuǎn)化為在時恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當時,,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因為,,所以,又,,,得.不等式恒成立,即在時恒成立,不等式恒成立必須,,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.21、(1);(2)①;②詳見解析.【解析】
(1)依題意可表示,,相減得,由等比數(shù)列通項公式轉(zhuǎn)化為首項與公比,解得答案,并由其都是正項數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關(guān)系,由等差數(shù)列的通項公式即可得答案;②由已知關(guān)系,表示
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程項目管理實務(wù)試題及答案實例
- 程項目管理核心試題及答案
- 工程項目管理的批判性思維試題及答案
- 2025年公共關(guān)系學考試想法
- 海底世界微課設(shè)計思路
- 2025年工程項目法律知識考核試題及答案
- 數(shù)學閱讀課“田忌賽馬”的教學設(shè)計
- 電力工程基礎(chǔ)知識題庫
- 零售行業(yè)智能零售解決方案
- 公共關(guān)系活動組織流程試題及答案
- 2025煤炭礦區(qū)水土保持監(jiān)測技術(shù)服務(wù)合同書
- 新能源電動汽車充電設(shè)施共建共享協(xié)議
- 中考科創(chuàng)班試題及答案
- 五金產(chǎn)品購銷合同清單
- 2024年全國高中數(shù)學聯(lián)賽(四川預賽)試題含答案
- 東北三省精準教學聯(lián)盟2024-2025學年高三下學期3月聯(lián)考地理試題(含答案)
- 空調(diào)安裝施工方案
- 英語-湖北省武漢市2025屆高中畢業(yè)生二月調(diào)研考試(武漢二調(diào))試題和答案
- GB/T 45140-2025紅樹林生態(tài)修復監(jiān)測和效果評估技術(shù)指南
- 《新聞報道與寫作技巧》課件
- HY/T 0382-2023海岸帶生態(tài)系統(tǒng)減災功能評估技術(shù)導則紅樹林和鹽沼
評論
0/150
提交評論