




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁蘭州工商學(xué)院
《機(jī)器學(xué)習(xí)與混合現(xiàn)實》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在監(jiān)督學(xué)習(xí)中,常見的算法有線性回歸、邏輯回歸、支持向量機(jī)等。以下關(guān)于監(jiān)督學(xué)習(xí)算法的說法中,錯誤的是:線性回歸用于預(yù)測連續(xù)值,邏輯回歸用于分類任務(wù)。支持向量機(jī)通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學(xué)習(xí)算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機(jī)在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學(xué)習(xí)算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無關(guān)2、在進(jìn)行數(shù)據(jù)預(yù)處理時,異常值的處理是一個重要環(huán)節(jié)。假設(shè)我們有一個包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關(guān)于異常值處理的方法,哪一項是不正確的?()A.可以通過可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計學(xué)方法,如三倍標(biāo)準(zhǔn)差原則,可以識別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對異常值進(jìn)行修正或替換,使其更符合數(shù)據(jù)的整體分布3、機(jī)器學(xué)習(xí)是一門涉及統(tǒng)計學(xué)、計算機(jī)科學(xué)和人工智能的交叉學(xué)科。它的目標(biāo)是讓計算機(jī)從數(shù)據(jù)中自動學(xué)習(xí)規(guī)律和模式,從而能夠進(jìn)行預(yù)測、分類、聚類等任務(wù)。以下關(guān)于機(jī)器學(xué)習(xí)的說法中,錯誤的是:機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三大類。監(jiān)督學(xué)習(xí)需要有標(biāo)注的訓(xùn)練數(shù)據(jù),無監(jiān)督學(xué)習(xí)則不需要標(biāo)注數(shù)據(jù)。那么,下列關(guān)于機(jī)器學(xué)習(xí)的說法錯誤的是()A.決策樹是一種監(jiān)督學(xué)習(xí)算法,可以用于分類和回歸任務(wù)B.K均值聚類是一種無監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)分成K個聚類C.強(qiáng)化學(xué)習(xí)通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略,適用于機(jī)器人控制等領(lǐng)域D.機(jī)器學(xué)習(xí)算法的性能只取決于算法本身,與數(shù)據(jù)的質(zhì)量和數(shù)量無關(guān)4、某機(jī)器學(xué)習(xí)項目需要對文本進(jìn)行情感分類,同時考慮文本的上下文信息和語義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機(jī)制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長短時記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語言模型(如BERT)微調(diào)D.以上模型都有可能5、在構(gòu)建一個用于圖像識別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時,需要考慮許多因素。假設(shè)我們正在設(shè)計一個用于識別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計的描述,哪一項是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計算復(fù)雜度,同時保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力6、在一個圖像生成任務(wù)中,例如生成逼真的人臉圖像,生成對抗網(wǎng)絡(luò)(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們在訓(xùn)練過程中相互對抗。以下關(guān)于GAN訓(xùn)練過程的描述,哪一項是不正確的?()A.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標(biāo)是準(zhǔn)確區(qū)分真實圖像和生成器生成的圖像C.訓(xùn)練初期,生成器和判別器的性能都比較差,生成的圖像質(zhì)量較低D.隨著訓(xùn)練的進(jìn)行,判別器的性能逐漸下降,而生成器的性能不斷提升7、在進(jìn)行聚類分析時,有多種聚類算法可供選擇。假設(shè)我們要對一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響8、在進(jìn)行異常檢測時,以下關(guān)于異常檢測方法的描述,哪一項是不正確的?()A.基于統(tǒng)計的方法通過計算數(shù)據(jù)的均值、方差等統(tǒng)計量來判斷異常值B.基于距離的方法通過計算樣本之間的距離來識別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測方法都能準(zhǔn)確地檢測出所有的異常,不存在漏檢和誤檢的情況9、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時,以下關(guān)于策略優(yōu)化方法的描述,哪一項是不正確的?()A.策略梯度方法通過直接計算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇10、在一個文本分類任務(wù)中,使用了樸素貝葉斯算法。樸素貝葉斯算法基于貝葉斯定理,假設(shè)特征之間相互獨(dú)立。然而,在實際的文本數(shù)據(jù)中,特征之間往往存在一定的相關(guān)性。以下關(guān)于樸素貝葉斯算法在文本分類中的應(yīng)用,哪一項是正確的?()A.由于特征不獨(dú)立的假設(shè),樸素貝葉斯算法在文本分類中效果很差B.盡管存在特征相關(guān)性,樸素貝葉斯算法在許多文本分類任務(wù)中仍然表現(xiàn)良好C.為了提高性能,需要對文本數(shù)據(jù)進(jìn)行特殊處理,使其滿足特征獨(dú)立的假設(shè)D.樸素貝葉斯算法只適用于特征完全獨(dú)立的數(shù)據(jù)集,不適用于文本分類11、在機(jī)器學(xué)習(xí)中,特征選擇是一項重要的任務(wù),旨在從眾多的原始特征中選擇出對模型性能有顯著影響的特征。假設(shè)我們有一個包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時,以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識和經(jīng)驗,手動選擇特征12、假設(shè)正在訓(xùn)練一個深度學(xué)習(xí)模型,但是訓(xùn)練過程中出現(xiàn)了梯度消失或梯度爆炸的問題。以下哪種方法可以緩解這個問題?()A.使用正則化B.調(diào)整學(xué)習(xí)率C.使用殘差連接D.減少層數(shù)13、某研究需要對生物信息數(shù)據(jù)進(jìn)行分析,例如基因序列數(shù)據(jù)。以下哪種機(jī)器學(xué)習(xí)方法在處理生物信息學(xué)問題中經(jīng)常被應(yīng)用?()A.隱馬爾可夫模型B.條件隨機(jī)場C.深度學(xué)習(xí)模型D.以上方法都常用14、在一個推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進(jìn)行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動態(tài)調(diào)整15、某研究團(tuán)隊正在開發(fā)一個用于醫(yī)療圖像診斷的機(jī)器學(xué)習(xí)模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強(qiáng)的強(qiáng)度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機(jī)制D.以上方法都可以二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋隨機(jī)森林算法的主要思想。2、(本題5分)說明機(jī)器學(xué)習(xí)中策略梯度算法的原理。3、(本題5分)機(jī)器學(xué)習(xí)在基因編輯中的應(yīng)用方向是什么?4、(本題5分)說明機(jī)器學(xué)習(xí)在考古學(xué)中的文物鑒定。三、論述題(本大題共5個小題,共25分)1、(本題5分)探討機(jī)器學(xué)習(xí)在醫(yī)療領(lǐng)域的應(yīng)用潛力。如疾病診斷、藥物研發(fā)等,分析數(shù)據(jù)質(zhì)量、隱私保護(hù)等問題對機(jī)器學(xué)習(xí)應(yīng)用的影響。2、(本題5分)論述機(jī)器學(xué)習(xí)在環(huán)境監(jiān)測領(lǐng)域的應(yīng)用。如空氣質(zhì)量預(yù)測、水質(zhì)監(jiān)測等,分析數(shù)據(jù)采集和模型選擇的關(guān)鍵問題。3、(本題5分)探討深度學(xué)習(xí)中的圖神經(jīng)網(wǎng)絡(luò)在藥物研發(fā)中的應(yīng)用。分析其原理及在分子結(jié)構(gòu)預(yù)測和藥物設(shè)計中的潛力。4、(本題5分)論述機(jī)器學(xué)習(xí)在能源管理中的智能電表數(shù)據(jù)分析中的應(yīng)用,分析其對能源消費(fèi)監(jiān)測的作用。5、(本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光伏發(fā)電購銷合同標(biāo)準(zhǔn)文本
- 出售不動產(chǎn)房屋合同樣本
- 公積金借款合同樣本樣本
- 入學(xué)合同標(biāo)準(zhǔn)文本
- 第18講 生物的分類和生物的多樣性 2025年會考生物學(xué)專題練習(xí)(含答案)
- ups買賣合同樣本
- 2025茶葉區(qū)域銷售代理合同樣本
- 出租合租店鋪合同樣本
- 人員轉(zhuǎn)運(yùn)服務(wù)合同標(biāo)準(zhǔn)文本
- 減水劑代理合同樣本
- 燃煤發(fā)電廠液氨罐區(qū)安全管理規(guī)定
- 蘇教版六年級下冊數(shù)學(xué)期末測試卷【完整版】
- 辦公耗材采購服務(wù)方案(技術(shù)方案)
- 【全新】《重大行政決策程序暫行條例》(全文自2019年9月1日起施行)課件
- 《研學(xué)旅行課程設(shè)計》課件-1研學(xué)課程學(xué)生手冊設(shè)計
- 法學(xué)概論(第七版) 課件全套 谷春德 第1-7章 我國社會主義法的基本理論 - 國際法
- 《燃煤火力發(fā)電企業(yè)設(shè)備檢修導(dǎo)則》
- 2024年云南省昆明市中考一模英語試題(含答案)
- 2024年上海楊浦區(qū)社區(qū)工作者招聘筆試沖刺題(帶答案解析)
- 家長會培養(yǎng)孩子正確使用電子設(shè)備的習(xí)慣
- 溝通中的共情和換位思考
評論
0/150
提交評論