版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省瀘州市龍馬潭區(qū)天立學校2025屆高考數學三模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.展開項中的常數項為A.1 B.11 C.-19 D.512.已知集合,,則集合的真子集的個數是()A.8 B.7 C.4 D.33.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則4.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當的外接圓面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.5.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.6.已知f(x)=是定義在R上的奇函數,則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)7.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.8.若,則()A. B. C. D.9.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.110.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.11.五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.12.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.二、填空題:本題共4小題,每小題5分,共20分。13.根據如圖所示的偽代碼,輸出的值為______.14.已知等差數列滿足,,則的值為________.15.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)16.的展開式中,的系數為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,為正數,且,證明:(1);(2).18.(12分)在世界讀書日期間,某地區(qū)調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮(zhèn)居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮(zhèn)居民農村居民合計經常閱讀10030不經常閱讀合計200(2)調查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發(fā)言,求被選中的2位居民都是經常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)已知,函數.(Ⅰ)若在區(qū)間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)20.(12分)交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯表,并據此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數平均車速不超過的人數合計男性駕駛員女性駕駛員合計(2)根據這些樣本數據來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數為,假定抽取的結果相互獨立,求的分布列和數學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82821.(12分)若關于的方程的兩根都大于2,求實數的取值范圍.22.(10分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.2、D【解析】
轉化條件得,利用元素個數為n的集合真子集個數為個即可得解.【詳解】由題意得,,集合的真子集的個數為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數問題,屬于基礎題.3、C【解析】
根據線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.4、A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.5、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設,故,,.故選:C【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.6、C【解析】
由奇函數的性質可得,進而可知在R上為增函數,轉化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數,所以,即,解得,即,易知在R上為增函數.又,所以,解得.故選:C.【點睛】本題考查了函數單調性和奇偶性的應用,考查了一元二次不等式的解法,屬于中檔題.7、C【解析】
根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.8、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數關系式的恒等變變換,同角三角函數關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.9、A【解析】
由題意得到關于的等式,結合對數的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數學應用意識?信息處理能力?閱讀理解能力以及指數對數運算.10、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.11、A【解析】
列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發(fā)生.12、D【解析】
根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
表示初值S=1,i=1,分三次循環(huán)計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結束,輸出:i=7.故答案為:7【點睛】本題考查在程序語句的背景下已知輸入的循環(huán)結構求輸出值問題,屬于基礎題.14、11【解析】
由等差數列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數列的通項公式及等差數列的性質的應用,屬于基礎題.15、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據線面垂直的判定和性質或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內,根據對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內,則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.16、16【解析】
要得到的系數,只要求出二項式中的系數減去的系數的2倍即可【詳解】的系數為.故答案為:16【點睛】此題考查二項式的系數,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.18、(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】
(1)根據題中數據得到列聯表,然后計算出,與臨界值表中的數據對照后可得結論;(2)由題意得概率為古典概型,根據古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮(zhèn)居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)在城鎮(zhèn)居民140人中,經常閱讀的有100人,不經常閱讀的有40人.采取分層抽樣抽取7人,則其中經常閱讀的有5人,記為、、、、;不經常閱讀的有2人,記為、.從這7人中隨機選取2人作交流發(fā)言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應用,利用列舉法是解決本題的關鍵,考查學生的計算能力.對于古典概型,要求事件總數是可數的,滿足條件的事件個數可數,使得滿足條件的事件個數除以總的事件個數即可,屬于中檔題.19、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導,得,已知導函數單調遞增,又在區(qū)間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題20、(1)填表見解析;有的把握認為,平均車速超過與性別有關(2)詳見解析【解析】
(1)根據題目所給數據填寫列聯表,計算出的值,由此判斷出有的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 債務合同協(xié)議范本
- 公司收購的協(xié)議范本
- 年終總結報告分享資料
- 全國賽課一等獎初中統(tǒng)編版七年級道德與法治上冊《在勞動中創(chuàng)造人生價值》課件
- (參考)酒瓶項目立項報告
- 2023年大功率多功能電子式電度表項目融資計劃書
- 2023年工業(yè)涂料水性色漿項目融資計劃書
- ASP模擬考試題及答案
- 養(yǎng)老院老人請假外出審批制度
- 《標準成本差異分析》課件
- 廣告創(chuàng)意與品牌宣傳考核試卷
- 提高吸入劑使用正確率品管圈成果匯報
- 2024年湖南省公務員錄用考試《行測》真題及答案解析
- 保安保潔保障人員院感培訓
- 會議接待擺臺培訓
- 工地交通安全管理培訓
- 2024年超聲科工作總結
- 2024年滬教版一年級上學期語文期末復習習題
- 康復醫(yī)學概論練習題庫(附答案)
- 部編版四年級上冊道德與法治期末測試卷
- 中國成人急性淋巴細胞白血病診斷與治療指南2024
評論
0/150
提交評論