版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆浙江省舟山市高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.2.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.3.已知函數(shù),,若成立,則的最小值是()A. B. C. D.4.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④5.設(shè),其中a,b是實(shí)數(shù),則()A.1 B.2 C. D.6.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且7.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.298.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.10.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,11.已知函數(shù),則下列判斷錯(cuò)誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對(duì)稱 D.的圖象關(guān)于點(diǎn)對(duì)稱12.過(guò)拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過(guò)橢圓中心的直線與橢圓相交于、兩點(diǎn)(點(diǎn)在第一象限),過(guò)點(diǎn)作軸的垂線,垂足為點(diǎn).設(shè)直線與橢圓的另一個(gè)交點(diǎn)為.則的值是________________.14.已知等差數(shù)列的各項(xiàng)均為正數(shù),,且,若,則________.15.若,則=______,=______.16.函數(shù)的定義域是___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.18.(12分)已知奇函數(shù)的定義域?yàn)椋耶?dāng)時(shí),.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.19.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級(jí)準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級(jí)理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再?gòu)倪@10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.20.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?1.(12分)已知函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時(shí),的最大值為,求證:.22.(10分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國(guó)建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國(guó),黨和國(guó)家為勞動(dòng)者開拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無(wú)公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長(zhǎng)光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長(zhǎng)光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說(shuō)出你的決策方案并說(shuō)明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長(zhǎng)光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購(gòu)均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤(rùn);(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過(guò)5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)?,所以,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.2、B【解析】
利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.3、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問題,通過(guò)構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過(guò)二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).4、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、D【解析】
根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計(jì)算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.6、B【解析】由且可得,故選B.7、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.8、B【解析】
先解不等式化簡(jiǎn)兩個(gè)條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對(duì)值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.9、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.10、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過(guò)點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過(guò)點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無(wú)窮大,最小可到無(wú)窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對(duì)目標(biāo)函數(shù)幾何意義的認(rèn)識(shí),屬于基礎(chǔ)題.11、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對(duì)于A,的最小正周期為,故A正確;對(duì)于B,由,可得,故B正確;對(duì)于C,正弦函數(shù)對(duì)稱軸可得:解得:,當(dāng),,故C正確;對(duì)于D,正弦函數(shù)對(duì)稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對(duì)稱,則解得:,故D錯(cuò)誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡(jiǎn)即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作.由拋物線定義知,所以,,,,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖形,設(shè)點(diǎn),則、,設(shè)點(diǎn),利用點(diǎn)差法得出,利用斜率公式得出,進(jìn)而可得出,可得出,由此可求得的值.【詳解】設(shè)點(diǎn),則、,設(shè)點(diǎn),則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.【點(diǎn)睛】本題考查橢圓中角的余弦值的求解,涉及了點(diǎn)差法與斜率公式的應(yīng)用,考查計(jì)算能力,屬于中等題.14、【解析】
設(shè)等差數(shù)列的公差為,根據(jù),且,可得,解得,進(jìn)而得出結(jié)論.【詳解】設(shè)公差為,因?yàn)?,所以,所以,所以故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式、需熟記公式,屬于基礎(chǔ)題.15、10【解析】
①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.16、【解析】
由于偶次根式中被開方數(shù)非負(fù),對(duì)數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點(diǎn)睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.18、(1);(2)【解析】
(1)根據(jù)奇函數(shù)定義,可知;令則,結(jié)合奇函數(shù)定義即可求得時(shí)的解析式,進(jìn)而得函數(shù)的解析式;(2)根據(jù)零點(diǎn)定義,可得,由函數(shù)圖像分析可知曲線與直線在第三象限必1個(gè)交點(diǎn),因而需在第一象限有2個(gè)交點(diǎn),將與聯(lián)立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因?yàn)楹瘮?shù)為奇函數(shù),且,故;當(dāng)時(shí),,,則;故.(2)令,解得,畫出函數(shù)關(guān)系如下圖所示,要使曲線與直線有3個(gè)交點(diǎn),則2個(gè)交點(diǎn)在第一象限,1個(gè)交點(diǎn)在第三象限,聯(lián)立,化簡(jiǎn)可得,令,即,解得,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了根據(jù)函數(shù)奇偶性求解析式,分段函數(shù)圖像畫法,由函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍應(yīng)用,數(shù)形結(jié)合的應(yīng)用,屬于中檔題.19、(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因?yàn)閷W(xué)生總數(shù)為1000人,該年級(jí)分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點(diǎn)睛】本題考查分層抽樣,考查超幾何分布及期望,考查運(yùn)算求解能力,是基礎(chǔ)題20、(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長(zhǎng)為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長(zhǎng)為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問題,屬于中檔題.21、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點(diǎn)斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時(shí),在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,令,即(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),由的單調(diào)性可得在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,在上的最小值是(Ⅲ)當(dāng)時(shí),令,則是單調(diào)遞減函數(shù).因?yàn)椋?,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時(shí),取得最大值是因?yàn)椋杂纱丝勺C試題解析:(Ⅰ)因?yàn)楹瘮?shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因?yàn)楹瘮?shù),所以(1)當(dāng)時(shí),,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,所以令,即,所以(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,所以在上的最小值是綜上所述,當(dāng)時(shí),在上的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)大中型拖拉機(jī)市場(chǎng)發(fā)展前景調(diào)研及投資戰(zhàn)略分析報(bào)告
- 2024-2030年中國(guó)壓力繼電器行業(yè)競(jìng)爭(zhēng)動(dòng)態(tài)與投資效益預(yù)測(cè)報(bào)告
- 2024年版股份有限公司并購(gòu)協(xié)議標(biāo)準(zhǔn)格式版B版
- 2024年某教育機(jī)構(gòu)與某科技公司關(guān)于在線教育平臺(tái)合作的合同
- 梅河口康美職業(yè)技術(shù)學(xué)院《材料工程基礎(chǔ)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年特許經(jīng)營(yíng)合同涉及連鎖餐飲業(yè)
- 2024年度施工現(xiàn)場(chǎng)安全生產(chǎn)設(shè)施檢測(cè)與維修協(xié)議3篇
- 2024年塔吊設(shè)備維護(hù)保養(yǎng)與操作人員培訓(xùn)勞務(wù)分包合同2篇
- 2025年道路貨運(yùn)運(yùn)輸駕駛員從業(yè)資格證模擬考試
- 2025年西寧貨運(yùn)從業(yè)資格證模擬考試題及答案解析大全
- 大學(xué)美育(同濟(jì)大學(xué)版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- MOOC 跨文化交際通識(shí)通論-揚(yáng)州大學(xué) 中國(guó)大學(xué)慕課答案
- 生物質(zhì)在煉鐵中的應(yīng)用
- 舞臺(tái)機(jī)械系統(tǒng)工程?hào)彭斾摻Y(jié)構(gòu)施工方案
- 銷售冠軍團(tuán)隊(duì)銷售職場(chǎng)培訓(xùn)動(dòng)態(tài)PPT
- 學(xué)歷學(xué)位審核登記表
- AQL抽樣檢驗(yàn)表(標(biāo)準(zhǔn)版本20)
- 原核藻類、真核藻類
- 交通事故快速處理單(正反打印)
- 通科實(shí)習(xí)出科考核病歷
- 獅子王2經(jīng)典臺(tái)詞中英文對(duì)照
評(píng)論
0/150
提交評(píng)論