




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁六盤水師范學(xué)院《深度學(xué)習(xí)應(yīng)用》
2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個利用人工智能進(jìn)行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個方面的優(yōu)化可能是關(guān)鍵的?()A.知識庫的構(gòu)建和更新B.自然語言處理模型的改進(jìn)C.對話流程的設(shè)計D.以上都是2、在人工智能的圖像識別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對衛(wèi)星圖像中的地物進(jìn)行分類,以下哪種方法可能會與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機(jī)B.決策樹C.聚類分析D.以上都有可能3、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的藝術(shù)圖像,以下關(guān)于GAN訓(xùn)練過程的描述,哪一項是不準(zhǔn)確的?()A.生成器試圖生成逼真的圖像來欺騙判別器,判別器則努力區(qū)分真實圖像和生成的圖像B.訓(xùn)練過程中,生成器和判別器的性能會交替提升,直到達(dá)到平衡C.一旦GAN訓(xùn)練完成,生成器就能夠獨立生成高質(zhì)量的圖像,無需判別器的參與D.調(diào)整生成器和判別器的網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以影響生成圖像的質(zhì)量和多樣性4、在人工智能的發(fā)展中,可解釋性是一個重要的研究方向。假設(shè)一個用于信用評估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測結(jié)果準(zhǔn)確就行B.可解釋性只對研究人員有意義,對于實際應(yīng)用中的用戶不重要C.通過特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無法解釋的黑盒部分5、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個多層神經(jīng)網(wǎng)絡(luò)來預(yù)測股票價格的走勢。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過多的噪聲,會產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對新的數(shù)據(jù)預(yù)測不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜6、隨著人工智能技術(shù)的發(fā)展,倫理和社會問題也日益受到關(guān)注。假設(shè)一個人工智能系統(tǒng)在招聘過程中根據(jù)候選人的數(shù)據(jù)分析做出決策,可能會導(dǎo)致潛在的歧視和不公平。為了避免這種情況,以下哪種措施最為關(guān)鍵?()A.對數(shù)據(jù)進(jìn)行匿名化處理B.建立透明的算法和決策機(jī)制C.限制人工智能在招聘中的應(yīng)用D.不使用敏感數(shù)據(jù)進(jìn)行分析7、在人工智能的自動駕駛領(lǐng)域,為了確保車輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個傳感器的數(shù)據(jù)進(jìn)行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學(xué)習(xí)C.基于貝葉斯估計D.以上都是8、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于訓(xùn)練機(jī)器人完成復(fù)雜的任務(wù)。假設(shè)一個機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會在不同地形上行走。以下關(guān)于強(qiáng)化學(xué)習(xí)訓(xùn)練機(jī)器人的描述,哪一項是不正確的?()A.機(jī)器人通過與環(huán)境的交互獲得獎勵或懲罰,從而調(diào)整自己的動作策略B.可以使用模擬環(huán)境進(jìn)行大量的訓(xùn)練,以減少在真實環(huán)境中的試驗成本和風(fēng)險C.強(qiáng)化學(xué)習(xí)訓(xùn)練出的機(jī)器人策略在不同的環(huán)境條件下都能保持最優(yōu)性能,無需進(jìn)一步調(diào)整D.合理設(shè)計獎勵函數(shù)對于引導(dǎo)機(jī)器人學(xué)習(xí)到期望的行為至關(guān)重要9、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實現(xiàn)家電的智能控制和自動化運行,根據(jù)用戶的習(xí)慣和需求進(jìn)行個性化設(shè)置B.通過語音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級階段,功能較為單一,無法滿足用戶的多樣化需求10、人工智能中的多智能體系統(tǒng)是由多個相互作用的智能體組成的。假設(shè)在一個物流配送場景中,多個配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點,哪一項是不正確的?()A.智能體之間需要進(jìn)行有效的通信和協(xié)調(diào)B.單個智能體的決策會影響整個系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略11、強(qiáng)化學(xué)習(xí)是另一種機(jī)器學(xué)習(xí)方法,通過與環(huán)境進(jìn)行交互并根據(jù)獎勵信號來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.強(qiáng)化學(xué)習(xí)中的智能體通過不斷嘗試不同的動作來獲取最大的累積獎勵B.強(qiáng)化學(xué)習(xí)適用于解決序列決策問題,如機(jī)器人控制和游戲策略制定C.強(qiáng)化學(xué)習(xí)不需要對環(huán)境有先驗的了解,完全通過與環(huán)境的交互來學(xué)習(xí)D.強(qiáng)化學(xué)習(xí)的訓(xùn)練過程簡單快速,通常能夠在短時間內(nèi)得到最優(yōu)的策略12、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向,如積極、消極或中性。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法在處理大量非結(jié)構(gòu)化文本數(shù)據(jù)時效果較好?()A.基于詞典的方法B.基于機(jī)器學(xué)習(xí)的分類方法C.基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)方法D.人工閱讀和判斷13、人工智能在教育領(lǐng)域的應(yīng)用有望實現(xiàn)個性化學(xué)習(xí)和智能輔導(dǎo)。假設(shè)一個在線學(xué)習(xí)平臺使用人工智能為學(xué)生提供個性化課程推薦,以下關(guān)于教育領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全根據(jù)學(xué)生的學(xué)習(xí)成績來推薦課程,無需考慮其他因素B.學(xué)生的學(xué)習(xí)習(xí)慣、興趣和知識水平等因素都應(yīng)該被納入人工智能的課程推薦模型中C.人工智能在教育領(lǐng)域的應(yīng)用可能會導(dǎo)致學(xué)生過度依賴技術(shù),降低自主學(xué)習(xí)能力D.教育領(lǐng)域的人工智能應(yīng)用不需要考慮教育倫理和學(xué)生隱私保護(hù)問題14、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任15、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識和模型來解決新的問題。假設(shè)已經(jīng)有一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個新的、但相關(guān)的圖像分類任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測B.微調(diào)原模型的部分層C.重新訓(xùn)練一個新的模型D.對原模型進(jìn)行壓縮16、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,在自然語言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語言模型應(yīng)用于特定領(lǐng)域的文本分類任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進(jìn)行分類,無需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進(jìn)行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進(jìn)行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語言模型對計算資源要求不高,任何設(shè)備都能輕松應(yīng)用17、在人工智能的語音合成任務(wù)中,要生成自然流暢且富有情感的語音。假設(shè)需要模擬不同人的聲音特點和情感表達(dá),以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語音合成模型,學(xué)習(xí)語音特征B.使用固定的語音模板,進(jìn)行簡單組合C.隨機(jī)生成語音的音調(diào)和語速D.不考慮情感因素,只生成清晰的語音18、人工智能在智能推薦系統(tǒng)中發(fā)揮著重要作用。例如,電商平臺通過分析用戶的購買歷史和瀏覽行為為用戶推薦商品。以下關(guān)于智能推薦系統(tǒng)的描述,哪一項是不正確的?()A.推薦系統(tǒng)可以基于用戶的協(xié)同過濾進(jìn)行推薦B.推薦系統(tǒng)只考慮用戶的近期行為,忽略歷史行為C.推薦系統(tǒng)可以結(jié)合內(nèi)容過濾和協(xié)同過濾提高推薦效果D.推薦系統(tǒng)需要不斷更新和優(yōu)化以適應(yīng)用戶興趣的變化19、假設(shè)要構(gòu)建一個能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識別系統(tǒng),用于識別不同種類的動物。在訓(xùn)練過程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯20、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學(xué)習(xí)的說法,不正確的是()A.聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下,實現(xiàn)多個參與方之間的模型訓(xùn)練和共享B.解決了數(shù)據(jù)在不同機(jī)構(gòu)之間難以流通和共享的問題C.聯(lián)邦學(xué)習(xí)的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應(yīng)用D.聯(lián)邦學(xué)習(xí)技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風(fēng)險21、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點進(jìn)行決策。假設(shè)要對大量的文本數(shù)據(jù)進(jìn)行分類,以下關(guān)于算法選擇的描述,哪一項是不正確的?()A.決策樹算法簡單直觀,適用于處理具有明顯特征差異的文本數(shù)據(jù)B.支持向量機(jī)在小樣本數(shù)據(jù)上表現(xiàn)較好,可用于高精度的文本分類C.隨機(jī)森林算法通過集成多個決策樹,能夠提高分類的穩(wěn)定性和準(zhǔn)確性D.選擇算法時只考慮算法的準(zhǔn)確性,而無需考慮計算資源和訓(xùn)練時間的需求22、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是23、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個大型的人工智能模型,以下關(guān)于算力的描述,哪一項是不正確的?()A.強(qiáng)大的計算資源,如GPU集群,可以加速模型的訓(xùn)練過程B.云計算平臺可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無關(guān)D.合理分配和利用算力資源對于提高訓(xùn)練效率和降低成本至關(guān)重要24、在人工智能的自然語言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項是不正確的?()A.使用預(yù)訓(xùn)練的語言模型,并在特定任務(wù)上進(jìn)行微調(diào)B.從簡單的句子生成開始,逐漸過渡到復(fù)雜的文章生成C.不使用任何先驗知識或語言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動的學(xué)習(xí)D.引入對抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性25、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長篇文章中提取關(guān)鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是26、人工智能中的異常檢測是一項重要任務(wù)。假設(shè)要在一個工業(yè)生產(chǎn)過程中檢測出異常的數(shù)據(jù)點,以下關(guān)于異常檢測方法的描述,正確的是:()A.基于統(tǒng)計的異常檢測方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測方法能夠自動發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無需人工特征工程D.以上方法在不同的應(yīng)用場景中都有各自的優(yōu)缺點,需要根據(jù)實際情況選擇27、深度學(xué)習(xí)模型在圖像識別、語音識別等領(lǐng)域取得了巨大的成功,但也面臨著過擬合、計算資源需求大等挑戰(zhàn)。假設(shè)要訓(xùn)練一個深度神經(jīng)網(wǎng)絡(luò)來識別各種動物的圖像,然而數(shù)據(jù)量有限,為了避免過擬合同時提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓(xùn)練輪數(shù)C.使用數(shù)據(jù)增強(qiáng)技術(shù)D.降低學(xué)習(xí)率28、在一個利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對于實時處理和準(zhǔn)確識別起到重要作用?()A.快速目標(biāo)檢測算法B.高效的特征提取方法C.分布式計算框架D.以上都是29、在人工智能的圖像生成任務(wù)中,例如生成逼真的人臉圖像或風(fēng)景圖像,假設(shè)需要生成具有高度細(xì)節(jié)和真實感的圖像。以下哪種技術(shù)或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對抗網(wǎng)絡(luò)(GANs),通過對抗訓(xùn)練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測D.隨機(jī)生成像素值來創(chuàng)建圖像30、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用二、操作題(本大題共5個小題,共25分)1、(本題5分)利用Python的TensorFlow框架,構(gòu)建一個膠囊網(wǎng)絡(luò)(CapsuleNetwork)模型,對Fashion-MNIST數(shù)據(jù)集進(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品工業(yè)升級新篇章:2025年傳統(tǒng)生產(chǎn)技術(shù)改造技術(shù)革新趨勢報告
- 2025年工業(yè)互聯(lián)網(wǎng)平臺邊緣計算硬件架構(gòu)在智慧醫(yī)療設(shè)備中的應(yīng)用前景報告
- 2025年環(huán)境影響評價公眾參與機(jī)制在環(huán)境友好型能源利用中的推廣報告
- 中醫(yī)藥現(xiàn)代化進(jìn)程中國際市場中醫(yī)學(xué)術(shù)交流與合作市場研究報告
- 電競俱樂部運營管理提升與品牌價值構(gòu)建研究報告2025
- (公司)行政部總結(jié)及工作設(shè)想
- 2025年物聯(lián)網(wǎng)智能家居系統(tǒng)集成創(chuàng)新成果鑒定報告
- 施工工地防火管理制度
- 雙層振動篩設(shè)備管理制度
- 廣東省農(nóng)村公廁管理制度
- 2025年現(xiàn)代圖書館管理與信息服務(wù)考試試題及答案
- 2025年高等教育心理學(xué)考試試卷及答案
- 2025年河北省中考二模道德與法治試題(啟光卷含答案)
- 材料力學(xué)知到智慧樹期末考試答案題庫2025年遼寧工程技術(shù)大學(xué)
- 敦煌文化介紹課件
- 2024年7月黑龍江省普通高中學(xué)業(yè)水平合格性考試生物試卷(含答案)
- 2025貴州中考:歷史必考知識點
- 肝硬化門靜脈高壓癥食管、胃底靜脈曲張破裂出血診治專家共識2025解讀
- 2025年重癥醫(yī)學(xué)科ICU護(hù)理標(biāo)準(zhǔn)化建設(shè)計劃
- 公司掛名法人免責(zé)協(xié)議書
- 2025年南通市通大全過程工程咨詢有限公司招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論