馬鞍山學(xué)院《藥用植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
馬鞍山學(xué)院《藥用植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
馬鞍山學(xué)院《藥用植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
馬鞍山學(xué)院《藥用植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
馬鞍山學(xué)院《藥用植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)馬鞍山學(xué)院

《藥用植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像2、計(jì)算機(jī)視覺(jué)中,以下哪個(gè)任務(wù)通常需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測(cè)C.圖像超分辨率D.圖像去噪3、當(dāng)利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取4、在計(jì)算機(jī)視覺(jué)中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫(kù)中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說(shuō)法,錯(cuò)誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學(xué)習(xí)方法可以學(xué)習(xí)到更具語(yǔ)義的圖像表示,提高圖像檢索的準(zhǔn)確性C.圖像檢索在電子商務(wù)、數(shù)字圖書(shū)館和圖像搜索引擎等領(lǐng)域有廣泛的應(yīng)用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫(kù)的組織和索引無(wú)關(guān)5、對(duì)于圖像分類任務(wù),假設(shè)需要對(duì)大量的自然風(fēng)景圖像進(jìn)行分類,包括山脈、森林、海灘和沙漠等場(chǎng)景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準(zhǔn)確性和泛化能力,以下哪種策略是至關(guān)重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如旋轉(zhuǎn)、翻轉(zhuǎn)和顏色變換B.只使用少量具有代表性的圖像進(jìn)行訓(xùn)練C.選擇簡(jiǎn)單的分類模型,避免過(guò)擬合D.不進(jìn)行任何預(yù)處理,直接使用原始圖像訓(xùn)練模型6、在計(jì)算機(jī)視覺(jué)的車牌識(shí)別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識(shí)別出車牌號(hào)碼。以下哪種技術(shù)可能有助于提高識(shí)別準(zhǔn)確率?()A.字符分割和單獨(dú)識(shí)別B.利用深度學(xué)習(xí)模型進(jìn)行端到端的識(shí)別C.只關(guān)注車牌的顏色特征D.隨機(jī)猜測(cè)車牌號(hào)碼7、對(duì)于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時(shí)保留圖像的細(xì)節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時(shí)可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對(duì)低分辨率圖像進(jìn)行簡(jiǎn)單的銳化處理D.不進(jìn)行任何處理,直接使用低分辨率圖像8、計(jì)算機(jī)視覺(jué)中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對(duì)一個(gè)古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)立體視覺(jué)的方法,從不同角度拍攝的圖像中計(jì)算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點(diǎn)云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實(shí)物體的形狀完全一致9、在計(jì)算機(jī)視覺(jué)中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對(duì)一組風(fēng)景圖像進(jìn)行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對(duì)圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)學(xué)習(xí)的特征10、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個(gè)在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項(xiàng)是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測(cè)目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過(guò)程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會(huì)對(duì)跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢(shì),提高跟蹤性能11、計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)一個(gè)工廠需要檢測(cè)生產(chǎn)線上的零件是否存在缺陷。以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠快速準(zhǔn)確地檢測(cè)出零件的表面缺陷、尺寸偏差等問(wèn)題B.可以通過(guò)機(jī)器視覺(jué)系統(tǒng)對(duì)零件進(jìn)行自動(dòng)分類和篩選C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺(jué)系統(tǒng)需要高度的穩(wěn)定性和可靠性,對(duì)環(huán)境變化不敏感D.計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用已經(jīng)非常成熟,不需要人工干預(yù)和校驗(yàn)12、計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。假設(shè)要通過(guò)圖像分析判斷農(nóng)作物的病蟲(chóng)害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲(chóng)害的程度B.不同農(nóng)作物品種和生長(zhǎng)階段對(duì)病蟲(chóng)害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺(jué)的應(yīng)用沒(méi)有挑戰(zhàn)13、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項(xiàng)是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過(guò)程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過(guò)后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會(huì)影響三維重建的結(jié)果14、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要對(duì)一段視頻中的物體運(yùn)動(dòng)進(jìn)行分析,以下關(guān)于光流估計(jì)的描述,正確的是:()A.稀疏光流估計(jì)只計(jì)算圖像中部分特征點(diǎn)的運(yùn)動(dòng),無(wú)法反映整體的運(yùn)動(dòng)趨勢(shì)B.稠密光流估計(jì)能夠得到圖像中每個(gè)像素的運(yùn)動(dòng)向量,但計(jì)算復(fù)雜度較高C.光流估計(jì)的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計(jì)只能用于分析勻速直線運(yùn)動(dòng)的物體,對(duì)于復(fù)雜的運(yùn)動(dòng)模式無(wú)法處理15、計(jì)算機(jī)視覺(jué)中的語(yǔ)義理解旨在理解圖像或視頻中的高層語(yǔ)義信息。以下關(guān)于語(yǔ)義理解的說(shuō)法,不正確的是()A.語(yǔ)義理解需要將圖像中的物體、場(chǎng)景和事件等與先驗(yàn)知識(shí)進(jìn)行關(guān)聯(lián)和解釋B.知識(shí)圖譜可以為語(yǔ)義理解提供豐富的語(yǔ)義信息和關(guān)系C.語(yǔ)義理解在圖像描述生成、問(wèn)答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語(yǔ)義理解已經(jīng)達(dá)到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容16、在計(jì)算機(jī)視覺(jué)的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測(cè)和病蟲(chóng)害檢測(cè),需要對(duì)大量的田間圖像進(jìn)行分析。假設(shè)我們要檢測(cè)農(nóng)作物葉片上的病蟲(chóng)害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準(zhǔn)確的檢測(cè),并且適應(yīng)不同的生長(zhǎng)階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)和分類算法,針對(duì)病蟲(chóng)害特征訓(xùn)練C.基于光譜分析和顏色特征的方法D.基于機(jī)器視覺(jué)和模式識(shí)別的方法17、物體檢測(cè)是計(jì)算機(jī)視覺(jué)中的一項(xiàng)關(guān)鍵任務(wù)。假設(shè)一個(gè)智能監(jiān)控系統(tǒng)需要檢測(cè)場(chǎng)景中的特定物體,如背包、自行車等。以下關(guān)于物體檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)的物體檢測(cè)算法能夠同時(shí)檢測(cè)多個(gè)物體,并給出它們的位置和類別B.可以通過(guò)滑動(dòng)窗口的方法在圖像中搜索可能的物體區(qū)域,然后進(jìn)行分類判斷C.物體檢測(cè)算法需要對(duì)大量的標(biāo)注圖像進(jìn)行訓(xùn)練,以學(xué)習(xí)不同物體的特征D.無(wú)論物體的大小、形狀和顏色如何變化,物體檢測(cè)算法都能準(zhǔn)確檢測(cè)到18、假設(shè)要開(kāi)發(fā)一個(gè)能夠在低光照條件下清晰拍攝并處理圖像的計(jì)算機(jī)視覺(jué)系統(tǒng),以下哪種圖像增強(qiáng)方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗(yàn)去霧D.以上都是19、當(dāng)進(jìn)行圖像的光流估計(jì)時(shí),假設(shè)要計(jì)算圖像中像素的運(yùn)動(dòng)速度和方向。以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機(jī)估計(jì)光流D.不進(jìn)行光流估計(jì),忽略像素的運(yùn)動(dòng)信息20、在計(jì)算機(jī)視覺(jué)的姿態(tài)估計(jì)任務(wù)中,假設(shè)要估計(jì)一個(gè)物體在三維空間中的姿態(tài),例如估計(jì)一個(gè)機(jī)器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實(shí)現(xiàn)這一目標(biāo)?()A.基于立體視覺(jué)的方法,通過(guò)多個(gè)相機(jī)的觀測(cè)B.利用深度學(xué)習(xí)模型直接預(yù)測(cè)姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進(jìn)行估計(jì)D.隨機(jī)猜測(cè)物體的姿態(tài)二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)描述計(jì)算機(jī)視覺(jué)在考古中的應(yīng)用。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的圖像質(zhì)量評(píng)價(jià)指標(biāo)。3、(本題5分)計(jì)算機(jī)視覺(jué)中如何實(shí)現(xiàn)家庭安防監(jiān)控?三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一款成功的數(shù)字雜志設(shè)計(jì),剖析其在頁(yè)面排版、多媒體元素運(yùn)用、閱讀流程引導(dǎo)等方面的創(chuàng)新之處,以及如何適應(yīng)不同設(shè)備的閱讀體驗(yàn)。2、(本題5分)研究某銀行的信用卡設(shè)計(jì),探討其在外觀設(shè)計(jì)、功能設(shè)計(jì)和品牌傳達(dá)方面的特色。3、(本題5分)觀察某兒童讀物的封面設(shè)計(jì),闡述其如何通過(guò)色彩和圖形吸引兒童讀者并傳

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論