版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆沙灣縣一中2025屆高考數學必刷試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.62.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元3.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規(guī)律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1204.已知集合,,則=()A. B. C. D.5.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-6.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則7.設,若函數在區(qū)間上有三個零點,則實數的取值范圍是()A. B. C. D.8.命題“”的否定是()A. B.C. D.9.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.10.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.11.設,則復數的模等于()A. B. C. D.12.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.15二、填空題:本題共4小題,每小題5分,共20分。13.函數的值域為_________.14.已知函數為上的奇函數,滿足.則不等式的解集為________.15.設是公差不為0的等差數列的前項和,且,則______.16.拋物線上到其焦點的距離為的點的個數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數列中,,,分別是下表第一、二、三行中的某一個數,且其中的任何兩個數不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數,使得,,成等比數列,若有,請求出的值;若沒有,請說明理由.18.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數據統(tǒng)計中發(fā)現,從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數量(萬人)1.41.72.02.42.83.13.5(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數精確到0.01).并預測2月10日全國累計報告確診病例數.參考數據:,,,.參考公式:相關系數回歸方程中斜率和截距的最小二乘估計公式分別為:,.19.(12分)設前項積為的數列,(為常數),且是等差數列.(I)求的值及數列的通項公式;(Ⅱ)設是數列的前項和,且,求的最小值.20.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.21.(12分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.22.(10分)已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.
答案:C【點睛】本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎題.2、D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.3、C【解析】
觀察規(guī)律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現規(guī)律,根號內分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發(fā)現總結各式規(guī)律是關鍵,屬于基礎題.4、C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.5、C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.6、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.7、D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區(qū)間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.8、D【解析】
根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.9、D【解析】
利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.10、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.11、C【解析】
利用復數的除法運算法則進行化簡,再由復數模的定義求解即可.【詳解】因為,所以,由復數模的定義知,.故選:C【點睛】本題考查復數的除法運算法則和復數的模;考查運算求解能力;屬于基礎題.12、B【解析】
由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用換元法,得到,利用導數求得函數的單調性和最值,即可得到函數的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數,在為減函數,又,,,故函數的值域為:.【點睛】本題主要考查了三角函數的最值,以及利用導數研究函數的單調性與最值,其中解答中合理利用換元法得到函數,再利用導數求解函數的單調性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.14、【解析】
構造函數,利用導數判斷出函數的單調性,再將所求不等式變形為,利用函數的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數單調遞減;當時,,此時函數單調遞增.所以,函數在處取得極小值,也是最小值,即,,,,即,所以,函數在上為增函數,函數為上的奇函數,則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構造函數,求函數的導數,利用導數和函數單調性之間的關系是解決本題的關鍵.綜合性較強.15、18【解析】
先由,可得,再結合等差數列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數列基本量的運算,重點考查了等差數列的前項和公式,屬基礎題.16、【解析】
設拋物線上任意一點的坐標為,根據拋物線的定義求得,并求出對應的,即可得出結果.【詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計算即可;(2)由(1)分別討論兩種情況,假設存在正整數,使得,,成等比數列,即,解方程是否存在正整數解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時等差數列,,,所以其通項公式為.②,,,此時等差數列,,,所以其通項公式為.(2)若選擇①,.則.若,,成等比數列,則,即,整理,得,即,此方程無正整數解,故不存在正整數,使,,成等比數列.若選則②,,則,若,,成等比數列,則,即,整理得,因為為正整數,所以.故存在正整數,使,,成等比數列.【點睛】本題考查等差數列的通項公式及前n項和,涉及到等比數列的性質,是一道中檔題.18、(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數約有4.5萬人.【解析】
(1)根據已知數據,利用公式求得,再根據的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數據,求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數據得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.19、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)當時,由,得到,兩邊同除以,得到.再根據是等差數列.求解.(Ⅱ),根據前n項和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當時,,所以,即,所以.因為是等差數列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數列是遞增數列,所以,即.【點睛】本題主要考查等差數列的定義,前n項和以及數列的增減性,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20、(1)(2)為定值.【解析】
(1)根據題意,得出,從而得出橢圓的標準方程.(2)根據題意設直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質,主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉化思想,是中檔題.21、(1),單調性見解析;(2)不存在,理由見解析【解析】
(1)由題意得,即可得;求出函數的導數,再根據、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構造函數(),求導后證明即可得解.【詳解】(1)由題可得函數的定義域為且,由,整理得..(?。┊敃r,易知,,時.故在上單調遞增,在上單調遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《壽司店策劃》課件
- 《種苗檔案建設》課件
- 二次函數復習課件
- 2024-2025學年廣東省清遠市四校聯(lián)考高一上學期11月期中聯(lián)考物理試題(解析版)
- 單位管理制度集粹匯編職員管理十篇
- 《危險管理與保險》課件
- 單位管理制度匯編大合集職工管理十篇
- 三年級數學欣賞與設計課件
- 單位管理制度分享大全【人事管理篇】十篇
- 《孔徑孔容計算》課件
- 橋梁施工質量通病及防治措施
- 醫(yī)療器械經營質量管理制度匯編
- 中國八大植被區(qū)域劃分
- 廠內機動叉車日常檢查記錄表
- 各類儀器儀表校驗記錄表18篇
- 自動生產排程 SMT 多線體 版
- 防造假管理程序文件
- 譯林版英語八年級上冊單詞表
- 中石油職稱英語
- 2023年副主任醫(yī)師(副高)-神經內科學(副高)考試歷年真題薈萃帶答案
- 國家義務教育質量監(jiān)測科學四年級創(chuàng)新作業(yè)測試卷【附答案】
評論
0/150
提交評論