版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題09圓重難點(diǎn)題型專訓(xùn)(十大題型)
旨【題型目錄】
題型一圓的基本概念辨析
題型二求圓中弦的條數(shù)
題型三求過圓內(nèi)一點(diǎn)的最長弦
題型四圓的周長和面積問題
題型五點(diǎn)與圓的位置關(guān)系
題型六三角形的外接圓
題型七確定圓的條件
題型八圓中角度的計(jì)算
題型九圓中線段長度的計(jì)算
題型十求一點(diǎn)到圓上點(diǎn)距離的最值
【知識(shí)梳理】
41經(jīng)典例題一圓的基本概念辨析】
【例1】(2023秋?河北保定?九年級(jí)統(tǒng)考期末)下列說法:(1)長度相等的弧是等弧;(2)相等的圓周角所
對(duì)的弧相等;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
*【變式訓(xùn)練】
1.0023春?安徽?九年級(jí)專題練習(xí))圓。的直徑AB=26cm,點(diǎn)C是圓。上一點(diǎn)(不與點(diǎn)/、8重合),作8,N8
于點(diǎn)若CZ)=12cm,則的長是()
A.8cmB.18cmC.8cm或18cmD.16cm
2.(2023春?山東濟(jì)南?九年級(jí)??奸_學(xué)考試)如圖,正方形中,45=4,E點(diǎn)沿線段/。由/向。
運(yùn)動(dòng)(到。停止運(yùn)動(dòng)),/點(diǎn)沿線段由。向8運(yùn)動(dòng)(到8停止運(yùn)動(dòng)),兩點(diǎn)同時(shí)出發(fā),速度相同,連接
EF,作尸于P點(diǎn),則在整個(gè)運(yùn)動(dòng)過程中尸點(diǎn)的運(yùn)動(dòng)軌跡長為
3.(2023春?廣東河源?九年級(jí)??茧A段練習(xí))如圖所示,為。。的直徑,是。。的弦,AB,。。的
延長線交于點(diǎn)E,已知AB=2Z)E,AAEC=20°.求//OC的度數(shù).
_,3【經(jīng)典例題二求圓中弦的條數(shù)】
【例2】(2023?浙江?九年級(jí)假期作業(yè))如圖,點(diǎn)A,O,。,點(diǎn)C,D,E以及點(diǎn)B,O,C分別在
一條直線上,則圓中弦的條數(shù)為()
A.2條B.3條C.4條D.5條
W【變式訓(xùn)練】
1.(2023秋?江蘇?九年級(jí)專題練習(xí))點(diǎn)A、0、D與點(diǎn)B、O、C分別在同一直線上,圖中弦的條數(shù)為()
A.2B.3C.4D.5
2.(2023秋?九年級(jí)課時(shí)練習(xí))如圖,圓中有一條直徑,—條弦,圓中以A為一個(gè)端點(diǎn)的優(yōu)弧有—條,劣
弧有一條.
3.(2023?浙江?九年級(jí)假期作業(yè))如圖,“BC是。。內(nèi)接三角形,請(qǐng)僅用無刻度的直尺,分別按下列要求
畫圖.
圖1圖2
(1)在圖1中,畫山一條與3c相等的弦;
(2)在圖2中,畫出一個(gè)與全等的三角形.
1經(jīng)典例題三求過圓內(nèi)一點(diǎn)的最長弦】
【例3】(2023秋?全國?九年級(jí)專題練習(xí))如圖,點(diǎn)48的坐標(biāo)分別是/(4,0),B(0,4),點(diǎn)C為坐標(biāo)
平面內(nèi)一動(dòng)點(diǎn),8c=2,點(diǎn)M為線段NC的中點(diǎn),連接OM,則0M的最大值為()
A.也+1B.V2+—C.2A/2+1D.2>/2——
*【變式訓(xùn)練】
1.(2023秋?浙江?九年級(jí)專題練習(xí))A、3是半徑為5c加的。。上兩個(gè)不同的點(diǎn),則弦N3的取值范圍是
()
A.AB>0B.0<AB<5C.0<AB<10D.0<^S<10
2.(2023秋?全國?九年級(jí)專題練習(xí))下列說法中正確的有_(填序號(hào)).
(1)直徑是圓中最大的弦;(2)長度相等的兩條弧一定是等?。唬?)半徑相等的兩個(gè)圓是等圓;(4)面積
相等的兩個(gè)圓是等圓;(5)同一條弦所對(duì)的兩條弧一定是等弧.
3.(2023秋?全國?九年級(jí)專題練習(xí))如圖所示,48為。。的一條弦,點(diǎn)C為。。上一動(dòng)點(diǎn),且
ZBC4=30。,點(diǎn)E,尸分別是/C,的中點(diǎn),直線E尸與。。交于G,,兩點(diǎn),若。。的半徑為7,求
GE+切的最大值.
【經(jīng)典例題四圓的周長和面積問題】
【例4】(2023春?山東泰安?九年級(jí)??计谥校┤鐖D兩個(gè)半徑都是4cm的圓外切于點(diǎn)C,一只螞蟻由點(diǎn)/開
始依《、B、C、D、E、F、C、G、/的順序沿著圓周上的8段長度相等的路徑繞行,螞蟻在這8段路徑上
不斷爬行,直到行走2006ncm后才停下來,則螞蟻停的那一個(gè)點(diǎn)為()
A.。點(diǎn)B.K點(diǎn)C.尸點(diǎn)D.G點(diǎn)
*【變式訓(xùn)練】
1.(2023春?四川?九年級(jí)專題練習(xí))如圖,在A/B。中,乙408=90。,/9。=30。,BO=6,。。的面積
為12萬,點(diǎn)、M,N分別在。。、線段43上運(yùn)動(dòng),則兒W長度的最小值等于()
A.2
C.V3D.2A/3
4
2.(2023秋?甘肅天水?八年級(jí)??计谀┤鐖D,已知在RZABC中,乙4c5=90。,分別以NC,BC,4B為
直徑作半圓,面積分別記為邑,S2,S3,若邑=9兀,則用+邑等于.
3.2023秋?上海徐匯?六年級(jí)上海市徐匯中學(xué)校考期末)某同學(xué)用所學(xué)過的圓與扇形的知識(shí)設(shè)計(jì)了一個(gè)問號(hào),
如圖中陰影部分所示,已知圖中的大圓半徑為4,兩個(gè)小圓的半徑均為2,請(qǐng)計(jì)算圖中陰影部分的周長和面
劣【經(jīng)典例題五點(diǎn)與圓的位置關(guān)系】
【例5】(2023秋?廣東惠州?九年級(jí)校考階段練習(xí))如圖,在RtA48c中,/C=90。,NC=4,3c=7,點(diǎn)
。在邊2C上,CD=3,。/的半徑長為3,。。與。/相交,且點(diǎn)8在。。外,那么。。的半徑長「可能是
)
C.T=5D.r=7
【變式訓(xùn)練】
1.(2023?山東泰安?統(tǒng)考三模)如圖‘拋物線>="-4與x軸負(fù)半軸交于點(diǎn)/,P是以點(diǎn)CQ3)為圓心,2
為半徑的圓上的動(dòng)點(diǎn),0是線段尸/的中點(diǎn),連接則線段。。的最小值是()
A.一B.2C.2V5-2D.273-2
2
2.(2023?河南南陽?統(tǒng)考一模)如圖,點(diǎn)E是正方形/BCD邊2C上一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)3、C重合),連接
DE,過點(diǎn)/作〃,小交于尸,垂足為尸,連接尸C,已知正方形的邊長為2,則尸C的最小值
3.(2023秋?江蘇?九年級(jí)專題練習(xí))在矩形23C。中,AB=6,ND=8.
AI------------------------\D
B'-----------1c
(1)若以A為圓心,8長為半徑作。/,則3、C、。與圓的位置關(guān)系是什么?
(2)若作。/,使3、C、D三點(diǎn)至少有一個(gè)點(diǎn)在ON內(nèi),至少有一點(diǎn)在外,則。/的半徑「的取值范圍
是_?
1經(jīng)典例題六三角形的外接圓】
[例6](2023秋?江蘇?九年級(jí)專題練習(xí))如圖所示,的三個(gè)頂點(diǎn)的坐標(biāo)分別為“(-1,3)、8(-2,-2)、
C(4,-2),則O8C外接圓半徑的長為(
c.VioD.V13
W【變式訓(xùn)練】
1.(2023春?全國?九年級(jí)專題練習(xí))如圖,。。是等邊三角形/8C的外接圓,若。。的半徑為2,則
的面積為()
A.叱B.V3C.2A/3D.36
2
2.(2023?廣東東莞?模擬預(yù)測)如圖,點(diǎn)。是等邊“BC內(nèi)部一動(dòng)點(diǎn),AB=6,連接4D,&),CD,若
ZABD=ZBCD,則AD的長度最小值是.
3.(2023秋?全國?九年級(jí)專題練習(xí))[探索發(fā)現(xiàn)]有張形狀為直角三角形的紙片,小俊同學(xué)想用些大小不同
的圓形紙片去覆蓋這張三角形紙片,經(jīng)過多次操作發(fā)現(xiàn),如圖1,以斜邊AB為直徑作圓,剛好是可以把
口△ABC覆蓋的面積最小的圓,稱之為最小覆蓋圓.
[理解應(yīng)用]
我們也可以用一些大小不同的圓覆蓋銳角三角形和鈍角三角形,請(qǐng)你通過操作探究解決下列問題
(1)如圖2.在A48c中,ZA=1O5°,試用直尺和圓規(guī)作出這個(gè)三角形的最小覆蓋圓(不寫作法,保留作圖痕
跡).
(2)如圖3,在AA5C中,zA=80°,zB=40°,AB=2也,請(qǐng)求出aABC的最小覆蓋圓的半徑
[拓展延伸]
(3)如圖4,在AA8C中,已知AB=15,AC=12,BC=9,半徑為1的。。在AA8C的內(nèi)部任意運(yùn)動(dòng),則。。
覆蓋不到的面積是
圖2
一、【經(jīng)典例題七確定圓的條件】
【例7】(2023秋?九年級(jí)課前預(yù)習(xí))下列說法中,真命題的個(gè)數(shù)是()
①任何三角形有且只有一個(gè)外接圓;②任何圓有且只有一個(gè)內(nèi)接三角形;③三角形的外心不一定在三角形
內(nèi);④三角形的外心到三角形三邊的距離相等;⑤經(jīng)過三點(diǎn)確定一個(gè)圓;
A.1B.2C.3D.4
【答案】B
【分析】①根據(jù)圓的確定,進(jìn)行判斷即可;②根據(jù)三角形的定義進(jìn)行判斷即可;③直角三角形的外心在斜
邊上,銳角三角形的外心在三角形內(nèi)部,鈍角三角形的外心在三角形的外部,進(jìn)行判斷;④根據(jù)三角形的
外心是三條邊的中垂線的交點(diǎn),進(jìn)行判斷即可;⑤不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓.
【詳解】解:①任何三角形有且只有一個(gè)外接圓,是真命題;
②任何圓有無數(shù)個(gè)內(nèi)接三角形,原說法錯(cuò)誤,是假命題;
③三角形的外心不一定在三角形內(nèi),是真命題;
④三角形的外心到三角形三個(gè)頂點(diǎn)的距離相等,原說法錯(cuò)誤,是假命題;
⑤不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,原說法錯(cuò)誤,是假命題;
綜上,真命題的個(gè)數(shù)為2個(gè);
故選B.
【點(diǎn)睛】本題考查三角形的外接圓和圓的確定.熟練掌握不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,三角形
的外心是三角形三邊的中垂線的交點(diǎn),是解題的關(guān)鍵.
■【變式訓(xùn)練】
1.(2023春?九年級(jí)課時(shí)練習(xí))如圖,PA、尸3為OO的切線,切點(diǎn)分別為A、B,尸。交48于點(diǎn)C,PO
的延長線交OO于點(diǎn)D.下列結(jié)論不一定成立的是()
A.八郎/為等腰三角形B.43與尸。相互垂直平分
C.點(diǎn)A、B都在以尸O為直徑的圓上D.PC為△37”的邊N8上的中線
2.(2023秋?全國?九年級(jí)專題練習(xí))如圖,在矩形/BCD中,E為月3的中點(diǎn),P為8c邊上的任意一點(diǎn),
把△尸3E沿PE折疊,得到△班E,連接CF.若48=10,SC=12,當(dāng)取最小值時(shí),AP的值等
于.
3.(2023秋?全國?九年級(jí)專題練習(xí))已知等邊。8C的邊長為8,點(diǎn)尸是48邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)/、B
不重合).
(1)如圖1.當(dāng)P8=34P時(shí),△APC的面積為;
(2)直線/是經(jīng)過點(diǎn)尸的一條直線,把段3C沿直線/折疊,點(diǎn)8的對(duì)應(yīng)點(diǎn)是點(diǎn)2'.
①如圖2,當(dāng)尸8=5時(shí),若直線////C,求的長度;
②如圖3,當(dāng)PB=6時(shí),在直線/變化過程中.請(qǐng)直接寫出面積的最大值.
一31經(jīng)典例題八圓中角度的計(jì)算】
【例8】1(2023?甘肅白銀???既#┤鐖D,4B、C是圓。上的三點(diǎn),且四邊形48co是平行四邊形,
。尸,OC交圓O于點(diǎn)凡則乙4。尸等于()
D.60°
?【變式訓(xùn)練】
1.(2023?四川廣元?統(tǒng)考一模)如圖,48為。。的直徑,CD是。。的弦,AB、的延長線交于點(diǎn)£,已
知4B=2DE,ZAEC=20°,則//OC的度數(shù)為()
C.60°D.80°
2.(2023秋?全國?九年級(jí)專題練習(xí))如圖,在矩形48CD中,AB=6,BC=4,M,N分別是2C,CD±.
的動(dòng)點(diǎn),連接NM,BN交于點(diǎn)£,且.NBND=NAMC.
(1)ZAEB=.
(2)連接CE,則CE的最小值為,
3.(2023秋?全國?九年級(jí)專題練習(xí))如圖,在。。中,OALOB,C為。O上一點(diǎn),連接OC,BC.
(1)^ZAOC-ZABC=30°,求N80C的度數(shù);
⑵若AAOB的面積與B0C的面積之比為5:3,求空的值.
J【經(jīng)典例題九圓中線段長度的計(jì)算】
【例9】(2023?全國?九年級(jí)專題練習(xí))如圖的方格紙中,每個(gè)方格的邊長為1,4、。兩點(diǎn)皆在格線的交點(diǎn)
上,今在此方格紙格線的交點(diǎn)上另外找兩點(diǎn)2、C,使得。BC的外心為。,求的長度為何()
I--------1—I--------1—I--------1—I--------1
1:?。骸璡0-
A.4B.5C.y/10D.275
W【變式訓(xùn)練】
1.(2023秋?江蘇?九年級(jí)專題練習(xí))如圖,4B是。。的直徑,弦CDJL/3于點(diǎn)E.若OE=CE=2,則BE
的長為()
A.V2B.2/-2C.1D.2
2.(2023春?貴州銅仁?九年級(jí)??茧A段練習(xí))如圖,在矩形A8CD中,/8=8,AD=6,M是4D邊上的
一點(diǎn),將AB肪1沿5M對(duì)折至ABMN,連接ON,當(dāng)DN的長最小時(shí),則/〃的長是.
3.(2023秋?全國?九年級(jí)專題練習(xí))如圖,^PAC=3Q°,在射線NC上順次截取=3cm,DB=10cm,
以DB為直徑作。。交射線/尸于E、尸兩點(diǎn).求:
(1)圓心。到4P的距離.
⑵求力少的長.
一、【經(jīng)典例題十求一點(diǎn)到圓上點(diǎn)距離的最值】
【例10】(2023秋?江蘇?九年級(jí)專題練習(xí))在同一平面內(nèi),已知。。的半徑為2,圓心。到直線/的距離為
3,點(diǎn)尸為圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線/的最大距離是()
A.2B.5C.6D.8
W【變式訓(xùn)練】
1.(2023春?浙江?八年級(jí)專題練習(xí))如圖,在平行四邊形Z5CQ中,ZB=60°,/8=4,AD=6,E是AB
邊的中點(diǎn),廠是線段上的動(dòng)點(diǎn),將^£8方沿E廠所在直線折疊得到連接87),則9。的最小值
A.2V10-2B.6C.4D.2713-2
2.(2023?全國?九年級(jí)專題練習(xí))如圖,在矩形4BC。中,AB=2,AD=5,動(dòng)點(diǎn)尸在矩形的邊上沿
CfOf/運(yùn)動(dòng).當(dāng)點(diǎn)尸不與點(diǎn)/、8重合時(shí),將沿/尸對(duì)折,得到A/9尸,連接C3',則在點(diǎn)尸
的運(yùn)動(dòng)過程中,線段的最小值為.
3.(2023?河北衡水?統(tǒng)考二模)如圖,A/8C和A/CD均為邊長為4的等邊三角形,點(diǎn)、M在邊BC上,£是
42的中點(diǎn),作點(diǎn)B關(guān)于EN的對(duì)稱點(diǎn)",連接8Z和2'知.
(1)求證:四邊形/BCD是菱形;
(2)求夕C的最小值;
⑶若夕M與48垂直,求CM的長.
【重難點(diǎn)訓(xùn)練】
1.(2023秋?九年級(jí)課時(shí)練習(xí))直角三角形的兩條直角邊長分別是12cm,5cm,則這個(gè)直角三角形的外接
圓的半徑是()
A.5cmB.6.5cmC.12cmD.13cm
2.(2023春?山東泰安?九年級(jí)??计谥校┤鐖D中外接圓的圓心坐標(biāo)是()
A.(5,1)B.(4,2)C.(5,2)D.(5,3)
3.(2023?吉林長春?統(tǒng)考一模)如圖,點(diǎn)尸是。。外一點(diǎn),分別以。、尸為圓心,大于:。P長為半徑作圓弧,
兩弧相交于點(diǎn)M和點(diǎn)N,直線交OP于點(diǎn)C,再以點(diǎn)C為圓心,以O(shè)C長為半徑作圓弧,交。。于點(diǎn)
連接尸/交血W于點(diǎn)3,連接。4OB.若/P=26。,則的大小為()
4.(2023?上海?模擬預(yù)測)如圖,在RtZUBC中,ZC=90°,AC=4,3C=7,點(diǎn)。在邊3C上,
CD=3,的半徑長為3,。。與。4相交,且點(diǎn)8在。。外,那么。。的半徑長r可能是()
A.r=lB.r=3C.r=5D.r=7
5.(2023秋?全國?九年級(jí)專題練習(xí))如圖,。〃的半徑為4,圓心〃■的坐標(biāo)為(6,8),點(diǎn)尸是。M上的任意
一點(diǎn),PAVPB,且尸/、尸3與x軸分別交于A、8兩點(diǎn),若點(diǎn)A、點(diǎn)8關(guān)于原點(diǎn)。對(duì)稱,則42的最大值
為()
D.28
6.(2023秋?浙江?九年級(jí)專題練習(xí))一個(gè)直角三角形的兩條邊長是方程/-8x+12=0的兩個(gè)根,則此直角
三角形的外接圓的直徑為.
7.(2023春?安徽安慶?九年級(jí)統(tǒng)考期末)中,么(1,5)、3(1,1)、C(4,l),則“BC外接圓圓心坐標(biāo)
為.
8.(2023秋?全國?九年級(jí)專題練習(xí))如圖,E是邊長為4的正方形48CD的邊CD上的一個(gè)動(dòng)點(diǎn),F(xiàn)是以8c
為直徑的半圓上的一個(gè)動(dòng)點(diǎn),連接/E,EF,則/E+EF的最小值是.
9.(2023?河南焦作?統(tǒng)考二模)如圖,在Rt448C中,AB=3,BC=4,DB=90°,正方形CDE尸的邊長
為1,將正方形CD環(huán)繞點(diǎn)C旋轉(zhuǎn)一周,點(diǎn)G為EF的中點(diǎn),連接/G,則線段/G的取值范圍是.
10.(2023?上海徐匯?統(tǒng)考二模)如圖,在直角坐標(biāo)系中,已知點(diǎn)/(8,0)、點(diǎn)8(0,6),。/的半徑為5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度教育信息化設(shè)備承包租賃協(xié)議3篇
- 二零二五年度水產(chǎn)養(yǎng)殖產(chǎn)業(yè)可持續(xù)發(fā)展戰(zhàn)略合作協(xié)議合同3篇
- 2025年度文化旅游創(chuàng)意園區(qū)委托經(jīng)營管理與合作合同3篇
- 2025年度農(nóng)村土地承包權(quán)生態(tài)補(bǔ)償與保護(hù)合同
- 二零二五年度房地產(chǎn)公司兼職正式聘用銷售合同3篇
- 二零二五年度新型城鎮(zhèn)化拆遷房產(chǎn)分割與生態(tài)補(bǔ)償合同3篇
- 2025年度競業(yè)禁止機(jī)械租賃及設(shè)備維護(hù)保養(yǎng)合同3篇
- 二零二五年度特色養(yǎng)殖養(yǎng)雞場地租賃及農(nóng)業(yè)旅游合同3篇
- 二零二五年度智能穿戴設(shè)備出口業(yè)務(wù)合同范本3篇
- 2025年度農(nóng)村電商農(nóng)副產(chǎn)品批發(fā)合作框架協(xié)議3篇
- 煤泥綜合利用的可行性研究報(bào)告
- 四川省自貢市2022-2023學(xué)年八年級(jí)上學(xué)期期末語文試題
- 變曲率雙向可調(diào)收縫式翻升模板施工工法
- 教你炒紅爐火版00纏論大概
- 消防管道施工合同
- 大學(xué)生計(jì)算與信息化素養(yǎng)-北京林業(yè)大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 2023年中國社會(huì)科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人(共500題含答案解析)筆試歷年難、易錯(cuò)考點(diǎn)試題含答案附詳解
- 2023年國開大學(xué)期末考復(fù)習(xí)題-3987《Web開發(fā)基礎(chǔ)》
- 《駱駝祥子》1-24章每章練習(xí)題及答案
- 《伊利乳業(yè)集團(tuán)盈利能力研究》文獻(xiàn)綜述3000字
- 減鹽防控高血壓培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論