版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁內(nèi)蒙古財經(jīng)大學(xué)《型錄設(shè)計》
2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實用價值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失2、計算機視覺中的光流計算用于估計圖像中像素的運動。假設(shè)要分析一段視頻中物體的運動速度和方向。以下關(guān)于光流計算的描述,哪一項是不準(zhǔn)確的?()A.可以通過比較連續(xù)幀之間的像素差異來計算光流B.光流計算能夠為視頻中的目標(biāo)跟蹤和行為分析提供重要信息C.無論視頻的幀率和分辨率如何,光流計算都能準(zhǔn)確地估計像素運動D.深度學(xué)習(xí)方法也被應(yīng)用于光流計算,提高了計算的準(zhǔn)確性和效率3、在計算機視覺的行人重識別任務(wù)中,即在不同攝像頭拍攝的圖像中識別出同一個行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述4、計算機視覺在文物保護和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護計算機視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學(xué)習(xí)的方法更精確B.文物的復(fù)雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應(yīng)用不需要考慮對文物的非接觸性和無損性要求5、假設(shè)要構(gòu)建一個能夠?qū)πl(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調(diào)查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是6、計算機視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個高速公路收費站實現(xiàn)準(zhǔn)確的車牌識別,以下關(guān)于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)7、計算機視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以實現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個UAV需要在復(fù)雜的環(huán)境中飛行并避開障礙物。以下關(guān)于計算機視覺在UAV中的描述,哪一項是錯誤的?()A.可以通過視覺傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r分析圖像,計算與障礙物的距離和相對速度,為飛行決策提供依據(jù)C.計算機視覺在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進行端到端的飛行控制,實現(xiàn)自主飛行8、計算機視覺中的虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)應(yīng)用需要實時生成逼真的視覺效果。假設(shè)要在一個VR游戲中為玩家提供沉浸式的視覺體驗,或者在AR應(yīng)用中準(zhǔn)確地將虛擬物體與現(xiàn)實場景融合。以下哪種計算機視覺技術(shù)在實現(xiàn)這些效果時至關(guān)重要?()A.實時渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用9、在計算機視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關(guān)于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果10、在三維計算機視覺中,重建物體的三維形狀是一個重要任務(wù)。假設(shè)要從多視角的圖像中重建一個建筑物的三維模型,以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法能夠直接從兩張圖像中準(zhǔn)確重建出物體的三維形狀B.結(jié)構(gòu)光方法在室外環(huán)境中比在室內(nèi)環(huán)境中更適用C.多視圖幾何和深度學(xué)習(xí)相結(jié)合的方法可以提高三維重建的精度和完整性D.三維重建的結(jié)果不受圖像拍攝角度和距離的影響11、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細(xì)節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學(xué)習(xí)的方法C.基于深度學(xué)習(xí)的方法,如SRCNND.基于小波變換的方法12、計算機視覺中的場景理解是對整個圖像場景的語義和結(jié)構(gòu)進行分析和理解。以下關(guān)于場景理解的描述,不準(zhǔn)確的是()A.場景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個方面B.可以通過構(gòu)建場景圖來表示場景中的實體和關(guān)系,輔助場景理解C.場景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價值D.場景理解是一個已經(jīng)完全解決的問題,不存在任何技術(shù)難題13、計算機視覺中的場景理解需要從圖像中推斷出物體之間的關(guān)系和場景的語義信息。假設(shè)要理解一張室內(nèi)辦公室場景的圖像,包括家具的布局、人員的活動等。以下哪種方法在進行場景理解時最為有效?()A.基于對象檢測和分類的方法B.基于圖模型的場景表示C.基于深度學(xué)習(xí)的場景解析D.基于規(guī)則推理的方法14、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強度選擇合適的去噪算法15、在計算機視覺的圖像檢索任務(wù)中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫中查找相似的圖像。假設(shè)要從一個大型圖像庫中找到與給定圖像相似的圖片,以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進行檢索能夠滿足所有的檢索需求B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)提取的特征在圖像檢索中不如手工設(shè)計的特征有效C.考慮圖像的語義信息和高層特征可以提高圖像檢索的準(zhǔn)確性和相關(guān)性D.圖像檢索的速度和效率不受數(shù)據(jù)庫大小和特征維度的影響16、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關(guān)于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標(biāo)跟蹤和動作識別等任務(wù)B.基于深度學(xué)習(xí)的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復(fù)雜的非勻速運動估計不準(zhǔn)確D.光流估計的結(jié)果可以為后續(xù)的計算機視覺任務(wù)提供重要的運動線索17、計算機視覺在無人駕駛中的應(yīng)用需要對周圍環(huán)境進行快速準(zhǔn)確的感知。假設(shè)車輛要在復(fù)雜的城市道路環(huán)境中行駛,以下哪種傳感器的數(shù)據(jù)融合可能對提高環(huán)境感知的可靠性至關(guān)重要?()A.攝像頭與激光雷達B.攝像頭與毫米波雷達C.激光雷達與超聲波傳感器D.以上都有可能18、在計算機視覺的行人重識別任務(wù)中,假設(shè)要在多個攝像頭拍攝的畫面中找到同一個行人。以下關(guān)于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進行融合D.利用深度學(xué)習(xí)模型自動學(xué)習(xí)特征的融合方式19、當(dāng)進行圖像的風(fēng)格遷移任務(wù)時,假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫的風(fēng)格,同時保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實現(xiàn)這一目標(biāo)時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對圖像進行簡單的色彩變換和濾鏡處理C.隨機改變圖像的像素值來模擬風(fēng)格遷移D.只對圖像的邊緣進行處理,忽略內(nèi)部區(qū)域20、在圖像配準(zhǔn)任務(wù)中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進行配準(zhǔn),以下哪個因素對于配準(zhǔn)的準(zhǔn)確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲21、在計算機視覺的醫(yī)學(xué)圖像分析中,輔助醫(yī)生進行疾病診斷。假設(shè)要通過分析CT圖像檢測腫瘤的位置和大小,以下關(guān)于醫(yī)學(xué)圖像計算機視覺應(yīng)用的描述,正確的是:()A.計算機視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進一步判斷B.不同患者的個體差異和掃描參數(shù)的變化對腫瘤檢測結(jié)果沒有影響C.結(jié)合醫(yī)生的先驗知識和計算機視覺技術(shù)能夠提高腫瘤檢測的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像中的噪聲和偽影對計算機視覺算法的性能沒有影響22、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征23、在計算機視覺中,人臉檢測和識別是重要的應(yīng)用方向。以下關(guān)于人臉檢測和識別的說法,不正確的是()A.人臉檢測旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識別是在檢測到人臉的基礎(chǔ)上,對人臉的身份進行識別和驗證C.深度學(xué)習(xí)方法在人臉檢測和識別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測和識別技術(shù)已經(jīng)非常成熟,不存在任何錯誤率和安全隱患24、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個或多個運動目標(biāo)。假設(shè)要跟蹤一個在操場上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運動速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤25、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機,獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個電路板都清晰成像C.采用高速攝像機,快速采集大量圖像D.選擇價格低廉的圖像采集設(shè)備,降低成本二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋計算機視覺中的注意力機制在圖像理解中的作用。2、(本題5分)解釋計算機視覺在典當(dāng)行業(yè)中的作用。3、(本題5分)簡述圖像的色彩模型轉(zhuǎn)換方法。4、(本題5分)簡述計算機視覺在化妝品生產(chǎn)中的質(zhì)量檢測。三、分析題(本大題共5個小題,共25分)1、(本題5分)研究某城市的地鐵線路圖設(shè)計,包括色彩選擇、圖標(biāo)設(shè)計和信息布局,分析其如何提高乘客的使用便利性和城市的交通效率。2、(本題5分)研究某公益組織的宣傳海報設(shè)計,分析其如何運用視覺元素引起公眾對社會問題的關(guān)注,激發(fā)參與和支持的意愿。3、(本題5分)研究某化妝品品牌的線下體驗店設(shè)計,分析其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一講《小企業(yè)會計制度》培訓(xùn)
- 2024高中地理第四章工業(yè)地域的形成與發(fā)展第1節(jié)工業(yè)的區(qū)位選擇練習(xí)含解析新人教版必修2
- 2024高中生物專題5DNA和蛋白質(zhì)技術(shù)課題2多聚酶鏈?zhǔn)椒磻?yīng)擴增DNA片段課堂演練含解析新人教版選修1
- 2024高中語文第三課神奇的漢字第1節(jié)字之初本為畫-漢字的起源練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2024高考地理一輪復(fù)習(xí)第十八單元區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展練習(xí)含解析
- 2024高考化學(xué)二輪復(fù)習(xí)選擇題專項練二含解析
- (4篇)2024大學(xué)社團活動工作總結(jié)
- 工程質(zhì)量檢測試驗
- 保潔過程中的環(huán)境保護控制措施
- 海關(guān)報關(guān)實務(wù)4-第三章2知識課件
- 河南省鄭州外國語高中-【高二】【上期中】【把握現(xiàn)在 蓄力高三】家長會【課件】
- 2025年中煤電力有限公司招聘筆試參考題庫含答案解析
- 企業(yè)內(nèi)部控制與財務(wù)風(fēng)險防范
- 建設(shè)項目施工現(xiàn)場春節(jié)放假期間的安全管理方案
- 胃潴留護理查房
- 污水處理廠運營方案計劃
- 眼科慢病管理新思路
- 劉先生家庭投資理財規(guī)劃方案設(shè)計
- 寵物養(yǎng)護與經(jīng)營-大學(xué)專業(yè)介紹
- 利潤分配協(xié)議三篇
- 房屋租賃合同樣本樣本
評論
0/150
提交評論