




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
Author:WilliamCopeland,wcopeland1981@Advisor:TimProffitt
Accepted:May28,2024
Abstract
Theincreasingsophisticationofmalwareposessignificantchallengesfortraditional
memoryanalysistechniquesindigitalforensics.Thisresearchexploresthepotentialof
leveragingGenerativeArtificialIntelligence(AI)models,specificallyOpenAI’sGPT-4
TurboandAnthropic’sClaude3Opus,toenhancemalwaredetectioninmemory.By
combiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,thisstudyaimstodevelopaninnovativeapproachforaccuratelyidentifyingandclassifyingmaliciousactivitiesinmemorydumps.Theresearch
methodologyinvolvescollectingadiversesetofmemorydumpsamples,preprocessingthedatausingVolatilityplugins,andevaluatingtheperformanceoftheAImodelsusingquantitativemetrics.
ThefindingshighlightthepotentialofGenerativeAImodelsineffectivelyidentifying
malware,whilealsorevealinglimitationsandareasforimprovement.Theimplications
suggestthatGenerativeAImodelscanserveasvaluablecomplementarytoolsalongsidetraditionalmalwaredetectionmethods,andfutureresearchrecommendationsinclude
expandingdatasets,developingdomain-specificmodels,andintegratingGenerativeAI
capabilitiesintoexistingmemoryforensicsworkflows.ThisstudylaysthefoundationforfurtherexplorationandadvancementofGenerativeAImodelsin-memoryanalysisand
malwaredetection.
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
2
1.Introduction
Indigitalforensics,memoryanalysisiscrucialinuncoveringvaluableevidence
andinsightsfromcomputersystems.Memorydumps,snapshotsofacomputer’svolatilememoryataspecifictime,containawealthofinformationaboutrunningprocesses,
networkconnections,andsystemactivities.However,malware’sincreasing
sophisticationandcomplexityposesignificantchallengesfortraditionalmemoryanalysistechniques.Researchhasshownthatmalwarehasreachedalevelofsophistication,
makingdetectionandanalysisextremelydifficultforforensicinvestigatorsandincidentrespondersduetomalwareauthorsemployingvariousobfuscationandevasion
techniques(Kolbitsch,etal.,2009).
Researchersandpractitionershaveturnedtoadvancedtoolsandframeworksto
addressthesechallenges,suchastheVolatilityFramework.TheVolatilityFrameworkisawidelyusedopen-sourcememoryforensicstoolthatprovidesacollectionofpluginsforextractingandanalyzingdatafrommemorysamplesfromdifferentoperationsystems
(TheVolatilityFramework,2024).However,theeffectivenessofmemoryanalysisheavilyreliesontheabilitytoaccuratelyidentifyandclassifymaliciouspatternsandbehaviorsintheextracteddata.
TheGenerativeArtificialIntelligence(AI)fieldhaswitnessedsignificant
advancementsinrecentyears,openingnewdataanalysisandpatternrecognition
possibilities.ModernGenerativeAImodelsincludeOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus.GPT-4Turboisalargemultimodalmodelwithalarger
contextwindowof128,000tokens,whichacceptstextorimagesasinputstoproducea
textoutput.Withbroadergeneralknowledgeandadvancedreasoningcapabilities,the
modelcanmoreaccuratelysolvecomplexproblems(Models,2024).Claude3Opusis
Anthropic’smostpowerfulmultimodalmodel,whichdeliversadvancedperformanceanddemonstratesahuman-likeunderstandingoftext(ModelsOverview,2024).Withan
extendedcontextwindowof200,000tokens,themodelcanprocesslargeamountsofdatatocompletehighlycomplextasks(LongContextWindowTips,2024).Toutilizethese
GenerativeAIcapabilities,apaidsubscriptionisrequiredtointeractwiththemodelviawebinterfaceoraccesstothemodelviaApplicationProgrammingInterface(API).
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
3
Overall,bothmodelsarepromisingcandidatesforapplicationinvariousdomains,includingcybersecurityanddigitalforensics.
ThisresearchexploresthepotentialofleveragingGenerativeAImodelsfor
enhancedmalwaredetectioninmemory.BycombiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,aninnovative
approachwillbedevelopedthatcanaccuratelyidentifyandclassifymaliciousactivitiesinmemorydumps,ultimatelystrengtheningthecapabilitiesofforensicinvestigatorsincombatingsophisticatedcyberthreats.
2.ResearchMethod
2.1.QuantitativeAnalysisMethod
Thisresearchwillutilizetheaccuracyanderrorratesmethodtoevaluatethe
performanceoftheGenerativeAImodels,specificallyOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus,inidentifyingmalwarewithmemorydumps.This
quantitativeanalysismethodprovidesastraightforwardapproachtomeasuringthe
overallproportionofsamplescorrectlyclassifiedbythemodel,whichaidsinidentifyingareasofimprovementforthemodel.Keymetricsarecalculatedbycomparingthe
models’predictionswiththegroundtruthlabels,suchasaccuracyanderrorrates,whichconsistoftheFalsePositiveRate(FPR)andFalseNegativeRate(FNR),toassessthe
effectivenessofmalwaredetection.Accuracy,asseeninFigure1,isthemeasurementoftheoverallcorrectnessofthemodelsinidentifyingmaliciousandbenignmemorydumps.
Accuracy=(TruePositive(TP)+TrueNegative(TN))/(TotalInstances)
Figure1:AccuracyCalculation
FPR,asseeninFigure2,calculatestheproportionofbenignsamplesincorrectlyclassifiedasmalicious.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
4
FPR=FalsePositive(FP)/(FalsePositive(FP)+TrueNegative(TN))
Figure2:FalsePositiveRateCalculation
FNR,asseeninFigure3,calculatestheproportionofmalicioussamplesincorrectlyclassifiedasbenign.
FNR=FalseNegative(FN)/(FalseNegative(FN)+TruePositive(TP))
Figure3:FalseNegativeRateCalculation
Thesemetricsprovideameanstoevaluatethemodels’performanceandhelpidentifytheirstrengthsandweaknessesinthecontextofmemoryforensics.
2.2.DataCollection
Thedatacollectionphaseinvolvedacquiringdiversememorydumpsamplesandcategorizingthemasmalicious,benign,orunknown.Toensurethereliabilityand
representativenessofthedataset,memorydumpsfromvarioussources,suchaspubliclyavailabledatasets,malwarerepositories,andreal-worldincidents,willbecollected.
TheVolatilityFrameworkwillextractvaluableinformationfromasystemduringmemoryacquisition,suchasprocesses,loadmodules,handles,andnetworkconnectionsfromeachmemorydumpsample(TheVolatilityFramework,2024).TheVolatility
plugin’soutputcreatesarichsetofartifactsanddatapointstoserveasinputforthe
GenerativeAImodels.ThreeartifactcategoriesofVolatilitypluginswereutilizedduringthisresearch:processes,networkconnections,andsuspiciousactivity.Figure4outlinesthepluginsforeachcategory.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
5
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
timeliner
dlllist
ldrmodules
handles
Figure4:VolatilityPlugins
Thesepluginswerechosenbasedontheirrelevancetomemoryanalysisandtheirabilitytoprovidevaluableinsightsintopotentialmaliciousactivities.
2.3.DataProcessing
Severalpreprocessingstepsmustbeperformedtopreparethecollecteddatafromthememorydump.First,theoutputfromtheVolatilitypluginsmustbecleaned,
aggregated,andconvertedintoastructuredformat,specificallyJavaScriptObjectNotation(JSON).Thisstandardizedformatwillfacilitatethedataingestionintothemodelsandensureconsistencyacrossdifferentmemorydumpsamples.
Next,alabelisappendedtothepreprocesseddatawiththesamplename,
operatingsystem,andthegroundtruthinformationforeachmemorydump.Thegroundtruthlabelswillclassifyeachsampleasmaliciousorbenign,providingareliable
referenceforevaluatingtheperformanceofthemodels.Figure5isthegroundtruthtableutilizedforthesamples.
Malicious
Benign
Sample-1
True
False
Sample-2
True
False
Sample-3
False
True
Sample-4
True
False
Sample-5
True
False
Sample-6
False
True
Figure5:GroundTruthTable
Furthermore,developinganappropriatesystempromptiscrucialforeffectivelyutilizingthemodels.Thepromptisdesignedtoelicitrelevantinformationfromthe
modelsbasedonthepreprocesseddata,enablingthemodeltomakeapredictionand
providemeaningfulinsights.Figure6isthesystempromptutilizedduringtheresearch.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
6
Youareanincidentresponderanalyzingamemorydumpfromapotentially
compromisedWindowssystemusingtheVolatilityframework.YouwillbeprovidedwiththeconsolidatedoutputoftheVolatilitypluginsrunagainstthememorydump.
YourtaskistocarefullyanalyzetheprovidedVolatilitypluginoutputtolookforevidencethatisofmalwareonthesystem.
Usethestep-by-stepinstructionsbelowtobuildaresponsetotheuser’sinput.
Step1-Theuserwillprovideyouwithdata.Providethefollowinginformation:<name>Providethesamplefilename.
<operatingsystem>Providetheoperatingsystemidentifiedinthefile.<key>Providethekeytothelabelkeypairinthedata.
<answer>InformtheuserifthedumpisMalicious,Benign,orUnknown.Onlyprovideoneanswer.
SampleName:<name>
OperatingSystem:<operatingsystem>
TruthLabel:<key>Prediction:<answer>
Step2-WriteoutyouranalysisandreasoningbasedontheVolatilityoutput.CitespecificlinesfromtheVolatilityoutputtojustifyyourreasoningwhereapplicable.
Figure6:SystemPrompt
2.4.ModelEvaluation
Evaluatingthemodelsrequiresasystempromptandingestingthepreprocesseddataintothemodelstoassesstheirperformanceusingquantitativemetrics.The
OpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelswereemployedforthispurpose,leveragingtheiradvanceddataanalysiscapabilitiestoanalyzethememory
dumpdata.
ThepreprocesseddatawasingestedintoOpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelsusingtheirrespectivedeveloperplatforms,OpenAI’sPlayground(Playground,2024)andAnthropic’sWorkbench(Workbench,2024).Theseweb-basedinterfacesprovideauser-friendlyenvironmentfordeveloperstosubmitdataandinteractwiththemodelsthroughtheirAPIs.Theplatformsallowforconfiguringmodel
parameters,suchastemperatureandtokenlimit,andprovideameanstoinputthesystempromptanddata.Uponsubmission,themodelsprocesstheinputandgeneratearesponsecontainingtheiranalysisandclassificationofthememorydumpsamples.Themodel’s
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
7
classificationsarethencomparedagainstthegroundtruthlabelsassociatedwitheachmemorydumpsampletoevaluatethemodels’performanceandcalculatetheaccuracy,FPR,andFNRmetrics.Bycomparingtheevaluationmetricsbetweenthemodels,the
researchwillshowinsightsthatcanbegleanedintotherelativestrengthsandweaknesses.
Insummary,theresearchmethodoutlinedinthissectionprovidesanapproachtoevaluatingtheeffectivenessofeachmodel.ItaimstocontributetotheadvancementofintegratingGenerativeAIintoforensicstechniquestocombatevolvingmalwarethreats.
3.FindingsandDiscussion
3.1.AnalysisofQuantitativeResults
Beforedivingintothequantitativeanalysisofthemodel’sperformance,itis
necessarytounderstandthenatureofthedatasetfedintothemodels.Theinputdatasetconsistedofextractedartifacts(runningprocesses,networkconnections,andsuspiciousmemoryregionswereextracted)frommemorysamples.Thesesamplesencompassedavarietyofmalwarefamilies,suchasransomware,trojans,androotkits,aswellasbenignmemorydumpsfromcleansystems.Includingmaliciousandbenignsampleswas
essentialtoaccuratelyassessthemodels’abilitytodistinguishbetweenthetwoclasses.
Itisimportanttonotethatthedatasetusedinthisanalysiswaslimitedtosix
samplesbutcontainedverycomplexdata.Thedatasetrepresentedvariousscenarios,
encompassingoperatingsystems,systemconfigurations,andmalwarebehaviors.The
complexityofthedatasetposedasignificantchallengeforthemodels,astheyneededtoidentifysubtlepatternsandindicatorsofcompromiseamidstavastamountofmemory
data.Byfeedingthemodelswithsuchacomprehensiveandchallengingdataset,theaimwastoassesstheirabilitytogeneralizeandaccuratelydetectmalwareinmemorydumps.
Thequantitativeanalysisofthemodels’performanceyieldedmeaningfulinsights.Thetruthtableandmodelpredictionsforeachsamplewereusedtocalculatethe
accuracy,FPR,andFNRforboththeGPT-4TurboandClaude3Opusmodels,refertoAppendixA–F.Figure7,AccuracyandErrorRates,consolidatesandprovidesthe
metricsforbothmodels.
wcopeland1981@
Accuracy
1
FalsePositiveRate
0
FalseNegativeRate
0
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
8
OpenAIGPT-4Turbo
AnthropicClaud3Opus
TruePositives(TP)
4
TruePositives(TP)
6
TrueNegatives(TN)
0
TrueNegatives(TN)
0
FalsePositives(FP)
2
FalsePositives(FP)
0
FalseNegatives(FN)
0
FalseNegatives(FN)
0
TotalSamples
6
TotalSamples
6
Accuracy
0.6666667
FalsePositiveRate
1
FalseNegativeRate
0
Figure7:AccuracyandErrorRates
Theaccuracy,FPR,andFNRvaluesrangefrom0to1,providingastandardizedmetricforevaluatingthemodels’performance.Accuracyrepresentstheoverall
correctnessofthemodelsinclassifyingmemorydumpsasmaliciousorbenign.Itis
calculatedbydividingthesumoftruepositives(correctlyidentifiedmalicioussamples)andtruenegatives(correctlyidentifiedbenignsamples)bythetotalnumberofsamples.Anaccuracycloserto1isanindicationofbetteroverallperformance.
Inthisanalysis,theGPT-4Turbomodelachievedanaccuracyof0.6666667,
whichmeansitcorrectlyclassifiedapproximately66.67%ofthesamples.Ontheotherhand,theClaude3Opusmodelachievedanaccuracyof1,indicatingthatitcorrectlyclassifiedallthesamplesinthedataset.
TheFalsePositiveRate(FPR)representstheproportionofbenignsamples
incorrectlyclassifiedasmalicious.Itiscalculatedbydividingthenumberoffalse
positives(benignsamplesincorrectlyidentifiedasmalicious)bythesumoffalse
positivesandtruenegatives(correctlyidentifiedbenignsamples).AnFPRcloserto0isdesirable,asitindicatesalowerrateoffalsealarms.TheGPT-4Turbomodel
demonstratedanFPRof1,incorrectlyclassifyingallbenignsamplesasmalicious.ThishighFPRsuggeststhattheGPT-4Turbomodeltendstogeneratefalsepositives,
potentiallyleadingtounnecessaryinvestigationeffortsandresourceallocation.In
contrast,theClaude3OpusmodelachievedanFPRof0,indicatingthatitdidnot
misclassifyanybenignsamplesasmalicious,whichisidealforreducingfalsealarms.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
9
TheFalseNegativeRate(FNR)representstheproportionofmalicioussamples
incorrectlyclassifiedasbenign.Itiscalculatedbydividingthenumberoffalsenegatives(malicioussamplesincorrectlyidentifiedasbenign)bythesumoffalsenegativesand
truepositives(correctlyidentifiedmalicioussamples).AnFNRcloserto0ispreferred,asitindicatesalowerrateofmissedmalware.TheGPT-4TurboandClaude3Opus
modelsdemonstratedanFNRof0,indicatingthattheycorrectlyidentifiedallthe
malicioussamplesinthedataset.ThisperfectFNRsuggeststhatbothmodelscandetectmalwarewithoutmissinganymaliciousinstances.
However,itiscrucialtoconsiderthelimitationsofthedatasetusedinthis
analysis.Thedatasetconsistsofalimitednumberofsamples,anditisvitaltoevaluatethemodels’performanceonamoreextensiveanddiversedatasettoassesstheir
generalizationcapability.Additionally,themodel’sabilitytodetectunseenmalwaresamplesinreal-worldscenariosshouldbevalidatedtoensuretheireffectivenessincategorizingsophisticatedandevolvingmalware.
RefertoAppendixA-FtoreviewthecompleteresponsefromGPT-4TurboandClaude3Opusmodelsforthesampledatasubmitted.
3.2.Limitations
Despitethepromisingresults,itisvitaltoacknowledgethelimitationsofthe
currentresearch.Onelimitationisthesizeanddiversityofthedatasetusedfor
evaluation.Whileeffortsweremadetocollectarepresentativesampleofmemorydumps,thedatasetdoesnotencompassallpossiblevariationsandemergingmalwaretechniques.Futureresearchshouldexpandthedatasetandincludeamorecomprehensiverangeof
malwarefamiliesandsystemconfigurations.
Anotherlimitationwastheconstraintposedbythecontextwindowsizeofthe
GPT-4TurboandClaude3Opusmodels.TheClaude3Opusmodelhasasignificantly
largercontextwindow,capableofprocessingupto72,000moretokensthantheGPT-4Turbomodel.ThisdifferenceintokencapacitypresentedchallengeswhensubmittingthedatageneratedbytheVolatilityplugins.Duetotheextensiveamountofdataproduced,
thetokenlimitofthemodelwasexceeded.Aniterativeprocesswasemployedto
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
10
reconfigurethepluginselectiontoensurethatthedatageneratedbytheVolatilitypluginsdidnotexceedthetokenlimitofthemodels.Theobjectivewastofindanoptimal
balancebetweencollectingacomprehensivesetofartifactsandreducingtheoveralldatasize.Theprocessinvolvedexchangingpluginsmultipletimesandevaluatingtheimpactonthetokencount.Aftereachreconfiguration,theresultingdatawassubmittedto
OpenAI’sTokenizer(Tokenizer,2024)andHuggingFacesTokenizertool(TokenizerArena,2024),whichcalculatedthetokensizeofthedata.Thisiterativeprocesswas
repeateduntilthedataforeachmemorydumpsamplewaswithinthe128,000tokens,
ensuringthedatadidnotexceedthecontextwindowforbothmodels.Asaresultofthisoptimization,theinitialsetoftenpluginshadtobenarroweddowntoasubsetofsix
plugins.Figure8presentstherefinedlistofpluginsusedinthefinalanalysis.
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
Figure8:VolatilityPlugins
Thisreductionallowedforthesuccessfulsubmissionofthedatatobothmodelswithoutexceedingtheirtokencapacities.However,italsomeantthatsomepotentiallyvaluableinformationfromtheexcludedpluginscouldnotbeincorporatedintotheanalysis.Thislimitationhighlightsthetrade-offswhenworkingwithAImodelswithdifferentcontextwindowsizes.
Moreover,themodelsusedinthisresearch,GPT-4TurboandClaude3Opus,haveinherentlimitations.Thesemodelsarebasedonnaturallanguageprocessingandmaynotbedesignedexplicitlyformalwaredetectioninmemorydumps.Further,fine-tuningandadaptingthemodelstothespecificdomainofmemoryforensicscould
enhancetheirperformance.
3.3.AreasofImprovement
Severalareasforimprovementcanbeidentifiedbasedonthefindingsand
limitationsdiscussed.First,thepreprocessingtechniquesappliedtothememorydump
datacouldbefurtherrefined.Exploringtechniquestoefficientlycompressorsummarize
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
11
thedatageneratedbytheVolatilitypluginswouldenabletheinclusionofmorecomprehensiveinformationwithinthetokenlimitsofthemodels.
Secondly,thepromptsusedtointeractwiththemodelscanbeoptimized.
Developingmoretargetedandcontext-specificpromptscouldimprovethemodels’
abilitytoidentifymaliciouspatternsaccurately.PromptdevelopmentiscrucialingettingthemostoutofGenerativeAImodels.Researcherscanguidethemodelsbycarefully
designingpromptstoproducemoreaccurateandrelevantresponsesformalwaredetectionandothertasks.
Whenoptimizingprompts,severalkeyfactorsshouldbeconsidered.Thepromptshouldhaveaclearobjective,explicitlystatingwhatthemodelshouldachieve(PromptEngineering,2024).Providingspecificdetailsorparametersrelevanttothetaskcan
furtherguidethemodel’sresponse.Usingconciseandunambiguouslanguagereduces
confusionandimprovesthemodel’sunderstandingofthetask.Includingrelevant
context,framingthepromptasaquestionordirective,andspecifyingtheroleorpersonathemodelshouldadoptcanalsohelprefinetheresponsestyleanddepthaccordingtotheassumedexpertise(PromptEngineering,2024).Breakingcomplextasksintoclear,
manageablestepsandprovidingexamplescanleadtomorestructuredandcoherentresponses(PromptEngineering,2024).
Promptdevelopmentisaniterativeprocessthatrequiresexperimentationand
refinement.Researchersshouldcontinuouslyevaluatethemodel’sresponsesandadjustthepromptsaccordingly.Well-craftedpromptscansignificantlyenhancethemodels’
abilitytoidentifymaliciouspatternsaccuratelyinthecontextofmalwaredetection.Bycarefullydesigningpromptsthatalignwitheachtask’sspecificobjectivesand
requirements,researchersandpractitionerscanharnessthepowerofthesemodelstosolvecomplexproblemsandgeneratevaluableinsights.
Additionally,incorporatingdomain-specificknowledgeandrulesintothemodelscouldenhancetheirperformance.Byintegratingexpertknowledgeandheuristicsfrom
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
12
memoryforensics,themodelscanbeguidedtowardamoreaccurateandcontext-awareprediction.
Furthermore,exploringensembletechniquesthatcombineGenerativeAImodelsorintegratingthemwithtraditionalmalwaredetectionmethodscouldprovideamore
robustapproachtoidentifyingmalwareinmemorydumps.
3.4.ReflectionontheResearchObjective
Theresearchobjectivessetoutatthebeginninghavebeensuccessfullyaddressed.Thequantitativeanalysismethod,utilizingaccuracyanderrorrates,providedameanstoevaluateGenerativeAImodels’performanceindetectingmalwareinmemorydumps.
Thedatacollectionandpreprocessingsteps,leveragingtheVolatilityFrameworkandselectedplugins,enabledtheextractionofartifactsfrommemorydumps.The
preprocesseddatawasinputfortheGenerativeAImodels,facilitatingtheirevaluationandanalysis.
Thefindingsanddiscussionsectionprovidedin-depthinsightsintothemodels’
performance,limitations,andareasforimprovement.Theimplicationsofthefindingsforenhancingmalwaredetectioninmemorywereexplored,highlightingthepotential
benefitsandchallengesassociatedwithintegratingGenerativeAImodelsinmemoryforensics.
4.ImplicationsandRecommendations
4.1.ImplicationsoftheFindings
Thefindingsofthisresearchhavesignificantimplicationsforimprovingmalwaredetectioninmemory.ThegenerativeAImodels’highaccuracyandrelativelylowerrorratesdemonstratetheirpotentialasavaluabletoolformemoryforensicspractitioners.
ByleveragingthepowerofGenerativeAI,investigatorscanautomateand
acceleratetheprocessofanalyzingmemorydumps,enablingthemtoidentifypotential
malwareinfectionsquickly.TheexperimentalresultsinthisstudyshowthattheClaude3Opusmodelachievedaperfectaccuracyscoreof1andanFNRof0,indicatingitsabilitytocorrectlyidentifyallmalicioussampleswithoutmissingany(Figure7).Thislevelof
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
13
accuracycanconsiderablyreducethetimeandenergyrequiredformanualanalysis,
allowingformoreefficientandeffectiveincidentresponse.ResearchhasshownthatAI-basedtechnologiesleveragedindigitalforensicinvestigationscandrasticallysavethe
timeneededtoevaluateanduncoverpotentialsecuritybreaches(Fakiha,2023).
Moreover,theabilityofgenerativeAImodelstolearnandadapttonewmalwarepatternsandtechniquesopenspossibilitiesforproactivethreatdetection.Asnewmalware
variantsemerge,thesemodelscanbecontinuouslytrainedandupdatedtodetectevolving
threats,enhancingorganizations’overallsecurityposture.Researchsuggeststhat
organizationsmustemploycontinuouslearningandadaptivemodelstokeeppacewith
theever-evolvinglandscapeofmalwarethreats(Sindiramutty,2023).However,itis
crucialtoconsiderthelimitationsandpotentialrisksassociatedwithrelyingsolelyon
GenerativeAIformalwaredetection.Falsepositivesandnegativescanhavesignificanteffects,suchaswastedresourcesonbenignsamplesoroverlookingthreats.Inthisstudy,theGPT-4Turbomodel’shighFPRof1.0(Figure7)highlightstheneedforcautionandfurtherrefinement.Therefore,itisrecommendedthatGenerativeAImodelsbeusedasacomplementarytooltoworkalongsidetraditionalmalwaredetectionmethodsandhumananalysis.
4.2.RecommendationsForFutureResearch
Basedontheoutcomesofthisstudy,severalrecommendationsforfutureresearchcanbemadetoenhancetheeffectivenessandapplicabilityofGenerativeAImodelsin
memoryforensics.TheserecommendationsfocusonaddressingthelimitationsidentifiedinthecurrentstudyandexploringnewavenuestofurtheradvancethefieldofAI-assistedmemoryforensics.
4.2.1.ExpandedDataset
Oneofthecriticallimitationsofthecurrentstudyisthelimitedsizeofthedataset,whichconsistedofonlysixmemorydumpsamples.Whilethisdatasetallowedforan
initialevaluationoftheGenerativeAImodels’performance,futureresearchshouldaimtocollectamoreextensiveanddiversedatasettoenhancethemodel’sgeneralization
abilityandrobustness.Expandingthedatasettoincludehundredsorthousandsofmemorydumpsamplesfromvarioussourceswouldprovideamorecomprehensive
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
14
representationofreal-worldscenar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)藥制劑及配套制瓶生產(chǎn)線項目可行性研究報告(范文)
- 《5.2 三角函數(shù)的概念》課時練習(xí)04
- 天然氣價格機制的市場調(diào)控與監(jiān)測
- 流量經(jīng)濟面試題及答案
- 攝影公司面試題及答案
- 人格識別考試題及答案
- 石油公司財務(wù)管理與資金流動優(yōu)化策略
- 接待記者面試題及答案
- 清鎮(zhèn)教師面試題及答案
- 企業(yè)智能制造轉(zhuǎn)型的策略與步驟
- 教師名師筆試題庫及答案
- 2025年廣東省東莞市大灣區(qū)教育研究院中考二模英語試題(含答案)
- 店鋪招人合同協(xié)議
- 2025年江西贛州國有資產(chǎn)投資集團有限公司招聘筆試參考題庫附帶答案詳解
- 2024年度江蘇省數(shù)據(jù)集團有限公司社會招聘筆試參考題庫附帶答案詳解
- 成人患者經(jīng)鼻胃管喂養(yǎng)臨床實踐指南解讀
- GB/T 24477-2025適用于殘障人員的電梯附加要求
- GB/T 45355-2025無壓埋地排污、排水用聚乙烯(PE)管道系統(tǒng)
- 保險運營培訓(xùn)課件
- 2025年中國分布式光伏行業(yè)市場動態(tài)分析、發(fā)展方向及投資前景分析
- 江蘇省無錫市2025年數(shù)學(xué)五下期末綜合測試試題含答案
評論
0/150
提交評論