




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆天津七中高三二診模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.2.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點(diǎn)對稱C.周期為 D.在上是增函數(shù)3.設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令.有以下6個(gè)論斷:①是奇函數(shù)時(shí),是奇函數(shù);②是偶函數(shù)時(shí),是奇函數(shù);③是偶函數(shù)時(shí),是偶函數(shù);④是奇函數(shù)時(shí),是偶函數(shù)⑤是偶函數(shù);⑥對任意的實(shí)數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤4.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④5.如下的程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.156.已知函數(shù)有兩個(gè)不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.7.若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點(diǎn)對稱 D.函數(shù)在上最大值是18.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.9.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.10.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.4011.已知函數(shù),若函數(shù)的極大值點(diǎn)從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.12.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.14.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.15.記為數(shù)列的前項(xiàng)和.若,則______.16.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.18.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.19.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.20.(12分)在平面直角坐標(biāo)系中,已知橢圓的短軸長為,直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為.當(dāng)與連線的斜率為時(shí),直線的傾斜角為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以為直徑的圓上的任意一點(diǎn),求證:21.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.22.(10分)設(shè)函數(shù),(1)當(dāng),,求不等式的解集;(2)已知,,的最小值為1,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】令圓的半徑為1,則,故選C.2、D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).3、A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí),則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,,此時(shí),故⑥錯(cuò)誤;故③④正確.故選:A【點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)椋燥@然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.5、A【解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.6、C【解析】
先求導(dǎo)得(),由于函數(shù)有兩個(gè)不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個(gè)不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個(gè)不同的極值點(diǎn),,所以方程有兩個(gè)不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計(jì)算能力,有一定的難度.7、A【解析】
根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對稱,錯(cuò)誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯(cuò)誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯(cuò)誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時(shí),在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯(cuò)誤;當(dāng)時(shí),,關(guān)于點(diǎn)對稱,錯(cuò)誤;當(dāng)時(shí),此時(shí)沒有最大值,錯(cuò)誤.本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).8、C【解析】
根據(jù),兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄?,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.9、B【解析】
由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.10、C【解析】
設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.11、C【解析】
對此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時(shí)有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個(gè)單位長度定義域的值域的2倍,故此得到極大值點(diǎn)的通項(xiàng)公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時(shí),,顯然當(dāng)時(shí)有,,∴經(jīng)單調(diào)性分析知為的第一個(gè)極值點(diǎn)又∵時(shí),∴,,,…,均為其極值點(diǎn)∵函數(shù)不能在端點(diǎn)處取得極值∴,,∴對應(yīng)極值,,∴故選:C【點(diǎn)睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題12、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】
由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點(diǎn)睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.14、【解析】
由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點(diǎn)睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.15、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對這些知識的理解掌握水平.16、135【解析】
根據(jù)題意先確定2個(gè)人位置不變,共有種選擇,再確定4個(gè)人坐4個(gè)位置,但是不能坐原來的位置,計(jì)算得到答案.【詳解】根據(jù)題意先確定2個(gè)人位置不變,共有種選擇.再確定4個(gè)人坐4個(gè)位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點(diǎn)睛】本題考查了分步乘法原理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國古典文學(xué)423072不喜歡閱讀中國古典文學(xué)301848總計(jì)7248120所以,沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會的男生中喜歡中國古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;;.所以的分布列為則.【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查隨機(jī)變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.18、(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據(jù)直線關(guān)于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)?,所以,,由題意,解得.(2)因?yàn)?,所?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)椋?,因?yàn)椋源嬖?,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時(shí),,即時(shí),.【點(diǎn)睛】本小題考查函數(shù)圖象的對稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識;考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識.19、(1)(ⅰ)證明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點(diǎn),連接,,因?yàn)闉榫€段的中點(diǎn),所以,因?yàn)?,所以因?yàn)椤嗡运倪呅螢槠叫兴倪呅危杂忠驗(yàn)椋杂忠驗(yàn)槠矫?,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因?yàn)椋?,所以以為原點(diǎn)建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因?yàn)橹本€與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點(diǎn)睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識,考查了推理能力與計(jì)算能力,屬于中檔題.20、(1);(2)詳見解析.【解析】
(1)由短軸長可知,設(shè),,由設(shè)而不求法作差即可求得,將相應(yīng)值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時(shí)候,成立,當(dāng)直線斜率存在時(shí),設(shè)出直線方程,與橢圓聯(lián)立,結(jié)合中點(diǎn)坐標(biāo)公式,弦長公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 戰(zhàn)略評估與風(fēng)險(xiǎn)識別試題及答案
- 數(shù)據(jù)挖掘方法試題及答案
- 2025年法學(xué)概論考試概述與試題及答案
- 深度剖析法學(xué)概論試題及答案
- 計(jì)算機(jī)二級VB考試去向建議試題及答案
- 風(fēng)險(xiǎn)管理能力建設(shè)考題及答案
- 人力資源戰(zhàn)略考核題及答案
- 網(wǎng)絡(luò)管理員職業(yè)挑戰(zhàn)與機(jī)遇試題及答案
- 信號處理與數(shù)據(jù)分析試題及答案
- 2025年國際市場參入策略與風(fēng)險(xiǎn)控制試題及答案
- 馬爾代夫旅游介紹
- 保險(xiǎn)行業(yè)檔案管理培訓(xùn)
- 無廢城市知識培訓(xùn)課件
- 2025煤炭礦區(qū)水土保持監(jiān)測技術(shù)服務(wù)合同書
- 五金產(chǎn)品購銷合同清單
- 2024年全國高中數(shù)學(xué)聯(lián)賽(四川預(yù)賽)試題含答案
- 東北三省精準(zhǔn)教學(xué)聯(lián)盟2024-2025學(xué)年高三下學(xué)期3月聯(lián)考地理試題(含答案)
- 空調(diào)安裝施工方案
- 英語-湖北省武漢市2025屆高中畢業(yè)生二月調(diào)研考試(武漢二調(diào))試題和答案
- GB/T 45140-2025紅樹林生態(tài)修復(fù)監(jiān)測和效果評估技術(shù)指南
- 《新聞報(bào)道與寫作技巧》課件
評論
0/150
提交評論