版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省亳州市高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.2.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.3.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)4.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.5.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-26.已知直線過雙曲線C:的左焦點(diǎn)F,且與雙曲線C在第二象限交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為A. B. C. D.7.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()8.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.9.已知雙曲線的右焦點(diǎn)為F,過右頂點(diǎn)A且與x軸垂直的直線交雙曲線的一條漸近線于M點(diǎn),MF的中點(diǎn)恰好在雙曲線C上,則C的離心率為()A. B. C. D.10.函數(shù)的圖象大致為()A. B.C. D.11.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍B.向右平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍C.向左平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍D.向左平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍12.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個(gè)月(按30天計(jì)算)共織布390尺.”則每天增加的數(shù)量為____尺,設(shè)該女子一個(gè)月中第n天所織布的尺數(shù)為,則______.14.已知拋物線的焦點(diǎn)為,斜率為2的直線與的交點(diǎn)為,若,則直線的方程為___________.15.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.16.已知函數(shù),在區(qū)間上隨機(jī)取一個(gè)數(shù),則使得≥0的概率為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點(diǎn)是以為直徑的圓上異于、的一點(diǎn),直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點(diǎn)到平面的距離.18.(12分)設(shè)的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.19.(12分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得且的概率為.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.21.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時(shí),需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過4個(gè),至少需要增加幾名維修工人?(只需寫出結(jié)論)22.(10分)已知是等腰直角三角形,.分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.2、B【解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點(diǎn)評(píng):算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤.3、B【解析】
根據(jù)題意分析的圖像關(guān)于直線對(duì)稱,即可得到的單調(diào)區(qū)間,利用對(duì)稱性以及單調(diào)性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對(duì)稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。4、A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.5、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【詳解】因?yàn)?,所以O(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【點(diǎn)睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.6、B【解析】
直線的傾斜角為,易得.設(shè)雙曲線C的右焦點(diǎn)為E,可得中,,則,所以雙曲線C的離心率為.故選B.7、B【解析】
根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱軸,得出,求出的最小值與對(duì)應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對(duì)稱軸和對(duì)稱點(diǎn),在對(duì)稱軸處取得最值,對(duì)稱點(diǎn)處函數(shù)值為零,屬于較易題目.8、C【解析】
由三視圖知,該幾何體是一個(gè)圓錐,其母線長是5,底面直徑是6,據(jù)此可計(jì)算出答案.【詳解】由三視圖知,該幾何體是一個(gè)圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識(shí),幾何體的表面積的計(jì)算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.9、A【解析】
設(shè),則MF的中點(diǎn)坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,M所在直線為,不妨設(shè),∴MF的中點(diǎn)坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意構(gòu)造的齊次方程.10、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢排除,最后剩下的一個(gè)即為正確選項(xiàng).11、D【解析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.12、D【解析】
根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】
設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項(xiàng)和公式求出,由此利用等差數(shù)列通項(xiàng)公式能求出.【詳解】設(shè)從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數(shù)量為,
,故答案為,52.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識(shí)解決問題的能力,屬于中檔題.14、【解析】
設(shè)直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點(diǎn)橫坐標(biāo)的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線.由題設(shè)得,故,由題設(shè)可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點(diǎn)睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.15、10【解析】
根據(jù)已知數(shù)據(jù)直接計(jì)算即得.【詳解】由題得,.故答案為:10【點(diǎn)睛】本題考查求平均數(shù),是基礎(chǔ)題.16、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點(diǎn):本小題主要考查與長度有關(guān)的幾何概型的概率計(jì)算.點(diǎn)評(píng):幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時(shí)做比的上下“測度”要一致.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)取的中點(diǎn),證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點(diǎn)到平面的距離可求.【詳解】解:(1)如圖:取的中點(diǎn),連接、.在中,是的中點(diǎn),是的中點(diǎn),平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點(diǎn)是圓上異于、的一點(diǎn),又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設(shè)到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點(diǎn)到平面的距離為故答案為:.【點(diǎn)睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.18、(1)(2)【解析】
(1)利用正弦定理化簡已知條件,由此求得的值,進(jìn)而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達(dá)式,進(jìn)而求得的取值范圍.【詳解】(1)由題設(shè)知,,即,所以,即,又所以.(2)由題設(shè)知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點(diǎn)睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.19、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計(jì)算公式可得,當(dāng)時(shí)根據(jù)題意有,共個(gè);當(dāng)時(shí)求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對(duì)即可.【詳解】解:(1)三個(gè)數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計(jì)數(shù)原理得:為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項(xiàng)共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計(jì)算公式能得到:,時(shí),應(yīng)滿足,,共個(gè),時(shí),應(yīng)滿足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設(shè),則由于為正整數(shù)知必為正整數(shù),,,化簡上式關(guān)系式可以知道:,均為偶數(shù),設(shè),則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗(yàn):符合題意,共有個(gè),綜上所述:共有個(gè)數(shù)對(duì)符合題意.【點(diǎn)睛】本題主要考查了排列組合的基本方法,同時(shí)也考查了組合數(shù)的運(yùn)算以及整數(shù)的分析方法等,需要根據(jù)題意20、(1)(2)(3)直線平面,證明見解析【解析】
取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量.(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個(gè)法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點(diǎn),連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設(shè)平面的一個(gè)法向量為.由,取,得.(1)證明:設(shè)直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個(gè)法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作總結(jié)之頂崗實(shí)習(xí)總結(jié)及自評(píng)
- 工作總結(jié)之創(chuàng)業(yè)經(jīng)驗(yàn)交流會(huì)總結(jié)
- 機(jī)器人操作系統(tǒng)(ROS2)入門與實(shí)踐 課件 第10章 ROS2的三維視覺應(yīng)用
- 銀行內(nèi)控測試與評(píng)估制度
- 乙烯基樹脂施工合同
- 《數(shù)字化房產(chǎn)》課件
- 福建省泉州市晉江市2024屆九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 云南省迪慶州維西縣第二中學(xué)2025屆高考仿真卷數(shù)學(xué)試卷含解析
- 烏海市重點(diǎn)中學(xué)2025屆高考語文二模試卷含解析
- 2025屆福建省龍巖市上杭二中高三二診模擬考試數(shù)學(xué)試卷含解析
- 小學(xué)語文人教課標(biāo)版(部編)三年級(jí)下冊(cè)習(xí)作:我的植物朋友 1
- 憲法學(xué)完整版教學(xué)課件全套ppt教程
- 西師大版六年級(jí)數(shù)學(xué)上冊(cè)《比和按比例分配的整理與復(fù)習(xí)》課件
- 房屋租賃合同終止協(xié)議書格式(3篇)
- PPT成功的秘訣——勤奮
- 建設(shè)工程監(jiān)理概論(PPT)
- 土地整治業(yè)務(wù)培訓(xùn)
- 澳大利亞教育質(zhì)量保障框架ppt課件
- 熱力學(xué)第四章熱力學(xué)第二定律(me)(1)
- 公園綠化養(yǎng)護(hù)景觀綠化維護(hù)項(xiàng)目迎接重大節(jié)會(huì)活動(dòng)的保障措施
- 調(diào)機(jī)品管理作業(yè)規(guī)范
評(píng)論
0/150
提交評(píng)論