新疆阿勒泰地區(qū)二中2025屆高考適應(yīng)性考試數(shù)學試卷含解析_第1頁
新疆阿勒泰地區(qū)二中2025屆高考適應(yīng)性考試數(shù)學試卷含解析_第2頁
新疆阿勒泰地區(qū)二中2025屆高考適應(yīng)性考試數(shù)學試卷含解析_第3頁
新疆阿勒泰地區(qū)二中2025屆高考適應(yīng)性考試數(shù)學試卷含解析_第4頁
新疆阿勒泰地區(qū)二中2025屆高考適應(yīng)性考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆阿勒泰地區(qū)二中2025屆高考適應(yīng)性考試數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.2.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.3.等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.74.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.5.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當時,恒有.則不等式的解集為().A. B.C.或 D.或6.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.77.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)8.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.9.設(shè)實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.410.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定11.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能12.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.14.若函數(shù)為偶函數(shù),則________.15.學校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預(yù)測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.16.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于兩點,求的值.18.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.19.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項公式;(2)求數(shù)列的前項和.20.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個內(nèi)角,若,求的值;21.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α122.(10分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大小;(2)若,且直線與平面所成角為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.2、B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.3、B【解析】

在等差數(shù)列中由等差數(shù)列公式與下標和的性質(zhì)求得,再由等差數(shù)列通項公式求得公差.【詳解】在等差數(shù)列的前項和為,則則故選:B【點睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.4、A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.5、D【解析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點,屬于較難題目.6、B【解析】

根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.7、B【解析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數(shù)性質(zhì)的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.8、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.9、C【解析】

畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.10、A【解析】

利用的坐標為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設(shè)直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題11、B【解析】

根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題.12、C【解析】

求得點坐標,由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.14、【解析】

二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題15、C【解析】

假設(shè)獲得一等獎的作品,判斷四位同學說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗條件.16、-1【解析】

由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復(fù)數(shù)的概念和運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.(2)利用(1)的結(jié)論,進一步利用一元二次方程根和系數(shù)的關(guān)系式的應(yīng)用求出結(jié)果.【詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標方程為.曲線的極坐標方程為.轉(zhuǎn)換為,轉(zhuǎn)換為直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為標準式為(為參數(shù)),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎(chǔ)本題考查的知識要點:主要考查極坐標,參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數(shù)方程的公式,及與解析幾何相關(guān)的直線與曲線位置關(guān)系的一些解題思路.18、(1)(2)證明見解析【解析】

(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當時,單調(diào)遞增;當時,單調(diào)遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當時,單調(diào)遞減;當時,單調(diào)遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學生的綜合應(yīng)用能力和轉(zhuǎn)化能力.19、(1);(2).【解析】

(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項公式即可得出;(2)利用“錯位相減法”、等比數(shù)列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設(shè)的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點晴】本題主要考查了等差數(shù)列的通項公式、“錯位相減法”、等比數(shù)列的前項和公式、一元二次方程的解法等知識點的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項公式,進而利用錯位相減法求和是解答的關(guān)鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.20、(1)(2)【解析】

(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論