山西中醫(yī)藥大學(xué)《數(shù)據(jù)分析基于課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
山西中醫(yī)藥大學(xué)《數(shù)據(jù)分析基于課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
山西中醫(yī)藥大學(xué)《數(shù)據(jù)分析基于課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
山西中醫(yī)藥大學(xué)《數(shù)據(jù)分析基于課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
山西中醫(yī)藥大學(xué)《數(shù)據(jù)分析基于課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)山西中醫(yī)藥大學(xué)《數(shù)據(jù)分析基于課程設(shè)計(jì)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)清洗過(guò)程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式2、在數(shù)據(jù)分析中,若要分析數(shù)據(jù)的偏態(tài)和峰態(tài),以下哪個(gè)統(tǒng)計(jì)量可以提供相關(guān)信息?()A.偏度系數(shù)B.峰度系數(shù)C.協(xié)方差D.相關(guān)系數(shù)3、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠準(zhǔn)確地描述數(shù)據(jù)特征。假設(shè)我們正在分析一組學(xué)生的考試成績(jī)。以下關(guān)于統(tǒng)計(jì)指標(biāo)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.平均數(shù)能夠反映數(shù)據(jù)的集中趨勢(shì),但容易受到極端值的影響B(tài).中位數(shù)不受極端值的影響,能更穩(wěn)健地表示數(shù)據(jù)的中心位置C.標(biāo)準(zhǔn)差越大,說(shuō)明數(shù)據(jù)的離散程度越小,數(shù)據(jù)越穩(wěn)定D.方差是標(biāo)準(zhǔn)差的平方,同樣可以反映數(shù)據(jù)的離散程度4、對(duì)于數(shù)據(jù)分析中的文本情感分析,假設(shè)要分析大量的產(chǎn)品評(píng)論,判斷其是正面、負(fù)面還是中性情感。以下哪種方法在處理自然語(yǔ)言的情感傾向時(shí)可能更有效?()A.使用情感詞典,匹配關(guān)鍵詞B.基于機(jī)器學(xué)習(xí)的分類模型C.深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)D.人工閱讀和判斷每條評(píng)論的情感5、假設(shè)要分析兩個(gè)變量之間的因果關(guān)系,以下關(guān)于因果分析方法的描述,正確的是:()A.相關(guān)性強(qiáng)就意味著存在因果關(guān)系B.格蘭杰因果檢驗(yàn)可以確定變量之間的單向或雙向因果關(guān)系C.觀察兩個(gè)變量的變化趨勢(shì)就能判斷因果關(guān)系D.不需要考慮其他潛在因素的影響,直接得出因果結(jié)論6、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)你要檢驗(yàn)一種新的營(yíng)銷策略是否有效,以下關(guān)于假設(shè)檢驗(yàn)方法的選擇,哪一項(xiàng)是最恰當(dāng)?shù)??()A.選擇t檢驗(yàn),比較兩組數(shù)據(jù)的均值是否有顯著差異B.運(yùn)用方差分析,檢驗(yàn)多組數(shù)據(jù)之間是否存在差異C.使用卡方檢驗(yàn),判斷分類變量之間的關(guān)聯(lián)D.不進(jìn)行假設(shè)檢驗(yàn),憑直覺(jué)判斷策略是否有效7、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要評(píng)估模型的性能。假設(shè)我們訓(xùn)練了一個(gè)分類模型,以下哪個(gè)評(píng)估指標(biāo)能夠綜合考慮模型的查準(zhǔn)率和查全率?()A.F1值B.準(zhǔn)確率C.召回率D.AUC值8、對(duì)于一個(gè)包含多個(gè)數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.卡方檢驗(yàn)C.正態(tài)性檢驗(yàn)D.F檢驗(yàn)9、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量評(píng)估是確保數(shù)據(jù)可靠性的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量評(píng)估可以使用多種指標(biāo),如準(zhǔn)確性、完整性、一致性等B.數(shù)據(jù)質(zhì)量評(píng)估可以通過(guò)手動(dòng)檢查和自動(dòng)化工具相結(jié)合的方式進(jìn)行C.數(shù)據(jù)質(zhì)量評(píng)估應(yīng)定期進(jìn)行,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問(wèn)題D.數(shù)據(jù)質(zhì)量評(píng)估只需要在數(shù)據(jù)進(jìn)入數(shù)據(jù)倉(cāng)庫(kù)之前進(jìn)行,之后就不需要再進(jìn)行評(píng)估了10、進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行分類。以下關(guān)于分類算法的描述,錯(cuò)誤的是:()A.決策樹(shù)算法易于理解和解釋B.支持向量機(jī)在處理高維數(shù)據(jù)時(shí)表現(xiàn)出色C.K近鄰算法對(duì)異常值不敏感D.樸素貝葉斯算法假設(shè)各個(gè)特征之間相互獨(dú)立11、數(shù)據(jù)挖掘技術(shù)在發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面發(fā)揮著重要作用。假設(shè)我們要從電商網(wǎng)站的用戶購(gòu)買記錄中挖掘用戶的購(gòu)買行為模式。以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,幫助進(jìn)行商品推薦B.分類算法能夠根據(jù)已知的類別標(biāo)簽對(duì)新的數(shù)據(jù)進(jìn)行分類預(yù)測(cè)C.聚類分析將數(shù)據(jù)分為不同的組,但這些組必須事先定義好D.數(shù)據(jù)挖掘需要大量的數(shù)據(jù)和計(jì)算資源,同時(shí)結(jié)果需要進(jìn)一步的分析和驗(yàn)證12、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來(lái)自不同數(shù)據(jù)庫(kù)的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問(wèn)題B.可以使用ETL(Extract,Transform,Load)工具來(lái)實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過(guò)程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性13、在進(jìn)行數(shù)據(jù)分析時(shí),發(fā)現(xiàn)數(shù)據(jù)集中存在一些離群點(diǎn)。對(duì)于離群點(diǎn)的處理,以下哪種方法較為恰當(dāng)?()A.直接刪除B.視為異常值,進(jìn)行特殊分析C.用平均值替代D.忽略不管14、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是15、在數(shù)據(jù)分析項(xiàng)目中,與利益相關(guān)者的溝通和理解需求至關(guān)重要。假設(shè)你正在為一家企業(yè)進(jìn)行數(shù)據(jù)分析,以下關(guān)于需求溝通的方法,哪一項(xiàng)是最有效的?()A.使用大量的技術(shù)術(shù)語(yǔ)和復(fù)雜的圖表來(lái)解釋分析過(guò)程B.以通俗易懂的語(yǔ)言,結(jié)合實(shí)際案例說(shuō)明分析的目標(biāo)和結(jié)果C.只與技術(shù)人員溝通,忽略非技術(shù)背景的利益相關(guān)者D.不與利益相關(guān)者溝通,自行決定分析的方向和重點(diǎn)16、在數(shù)據(jù)分析中,數(shù)據(jù)隱私和安全是需要關(guān)注的重要問(wèn)題。假設(shè)要處理包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)隱私和安全的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以采用數(shù)據(jù)加密技術(shù)對(duì)敏感數(shù)據(jù)進(jìn)行加密存儲(chǔ)和傳輸,保護(hù)數(shù)據(jù)的機(jī)密性B.匿名化和脫敏處理可以在一定程度上保護(hù)個(gè)人隱私,但需要注意處理方法的合理性C.只要數(shù)據(jù)在企業(yè)內(nèi)部使用,就不需要考慮數(shù)據(jù)隱私和安全的問(wèn)題D.遵守相關(guān)的法律法規(guī)和行業(yè)規(guī)范,是保障數(shù)據(jù)隱私和安全的基本要求17、數(shù)據(jù)分析中的異常檢測(cè)用于發(fā)現(xiàn)數(shù)據(jù)中的異常值或離群點(diǎn)。假設(shè)我們?cè)诜治錾a(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù),以下哪種異常檢測(cè)方法可能適用于檢測(cè)突然出現(xiàn)的質(zhì)量下降?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.以上都是18、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集,以下哪種算法是常用的?()A.FP-Growth算法B.PageRank算法C.LDA算法D.HITS算法19、對(duì)于一個(gè)包含大量文本和數(shù)值混合數(shù)據(jù)的數(shù)據(jù)集,以下哪種預(yù)處理方法較為常見(jiàn)?()A.文本向量化B.數(shù)值標(biāo)準(zhǔn)化C.特征工程D.以上都是20、對(duì)于一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,若要進(jìn)行情感分析,以下哪種技術(shù)可能會(huì)被用到?()A.自然語(yǔ)言處理B.圖像識(shí)別C.語(yǔ)音識(shí)別D.機(jī)器學(xué)習(xí)二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)數(shù)據(jù)分析中常使用回歸分析來(lái)研究變量之間的關(guān)系。請(qǐng)解釋線性回歸和非線性回歸的區(qū)別,并說(shuō)明在何種情況下應(yīng)選擇非線性回歸模型。2、(本題5分)闡述數(shù)據(jù)分析中的生存分析的概念和應(yīng)用場(chǎng)景,如在醫(yī)學(xué)研究、客戶流失預(yù)測(cè)中的應(yīng)用,并解釋常用的生存分析方法。3、(本題5分)解釋什么是概率圖模型,說(shuō)明其在不確定性推理和數(shù)據(jù)分析中的應(yīng)用和方法,并舉例分析。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線爵士鼓教學(xué)平臺(tái)保存了學(xué)員學(xué)習(xí)進(jìn)度數(shù)據(jù)、練習(xí)時(shí)間統(tǒng)計(jì)、鼓棒消耗情況等。制定合理的教學(xué)計(jì)劃和鼓棒采購(gòu)策略。2、(本題5分)某民宿預(yù)訂平臺(tái)擁有房源數(shù)據(jù)、用戶預(yù)訂行為、評(píng)價(jià)數(shù)據(jù)等。提升民宿的服務(wù)質(zhì)量和用戶體驗(yàn),增加平臺(tái)競(jìng)爭(zhēng)力。3、(本題5分)某餐飲外賣平臺(tái)積累了商家的出餐速度、菜品質(zhì)量、用戶評(píng)價(jià)等。探討怎樣利用這些數(shù)據(jù)優(yōu)化外賣配送服務(wù)和商家管理。4、(本題5分)某在線旅游預(yù)訂平臺(tái)掌握了用戶的搜索偏好、預(yù)訂行為、取消訂單原因等數(shù)據(jù)。分析怎樣利用這些數(shù)據(jù)改進(jìn)用戶體驗(yàn)和服務(wù)質(zhì)量。5、(本題5分)某電商平臺(tái)的美妝類目擁有大量銷售數(shù)據(jù),包含品牌、產(chǎn)品類別、價(jià)格、銷量、用戶年齡等。分析不同年齡用戶對(duì)各品牌和產(chǎn)品類別的購(gòu)買偏好及價(jià)格接受度。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)在農(nóng)業(yè)領(lǐng)域,氣候、土壤和作物生長(zhǎng)數(shù)據(jù)對(duì)于精準(zhǔn)農(nóng)業(yè)至關(guān)重要

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論