下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€(xiàn)…………第1頁(yè),共1頁(yè)陜西財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《人工智能技術(shù)及應(yīng)用》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的模型評(píng)估指標(biāo)對(duì)于衡量模型性能至關(guān)重要。假設(shè)要評(píng)估一個(gè)二分類(lèi)模型的性能,除了準(zhǔn)確率之外,以下哪種指標(biāo)在某些情況下更能反映模型的實(shí)際效果,特別是當(dāng)類(lèi)別分布不均衡時(shí)?()A.召回率B.F1值C.精確率D.均方誤差2、人工智能在金融風(fēng)險(xiǎn)管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測(cè)市場(chǎng)風(fēng)險(xiǎn),以下關(guān)于模型評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測(cè)的比例B.召回率,即模型正確識(shí)別出風(fēng)險(xiǎn)的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測(cè)值與實(shí)際值之間的差異3、在人工智能的圖像識(shí)別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計(jì)一個(gè)用于識(shí)別手寫(xiě)數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個(gè)因素對(duì)于提高識(shí)別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量4、在人工智能的推薦系統(tǒng)中,例如為用戶(hù)推薦電影、音樂(lè)或商品,需要考慮用戶(hù)的歷史行為、偏好和當(dāng)前的情境信息。假設(shè)一個(gè)用戶(hù)的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應(yīng)這種動(dòng)態(tài)的用戶(hù)偏好?()A.基于協(xié)同過(guò)濾的推薦,依賴(lài)其他用戶(hù)的行為B.基于內(nèi)容的推薦,分析物品的特征C.混合推薦,結(jié)合多種推薦方法D.始終使用固定的推薦策略,不進(jìn)行調(diào)整5、人工智能中的知識(shí)圖譜是一種結(jié)構(gòu)化的知識(shí)表示方法。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下哪個(gè)方面是需要重點(diǎn)考慮的?()A.事件的時(shí)間順序B.事件的參與者C.事件的影響力評(píng)估D.以上都是6、人工智能中的聚類(lèi)算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶(hù)數(shù)據(jù)進(jìn)行聚類(lèi)分析。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類(lèi)算法,需要事先指定簇的數(shù)量B.聚類(lèi)算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類(lèi)算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類(lèi)結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響7、人工智能在語(yǔ)音識(shí)別領(lǐng)域取得了重大進(jìn)展。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)將語(yǔ)音轉(zhuǎn)換為文字的系統(tǒng),以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不正確的?()A.聲學(xué)模型用于分析語(yǔ)音的聲學(xué)特征,語(yǔ)言模型用于理解語(yǔ)言的語(yǔ)法和語(yǔ)義B.深度神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別中能夠提高識(shí)別準(zhǔn)確率和魯棒性C.語(yǔ)音識(shí)別系統(tǒng)在各種環(huán)境和口音條件下都能達(dá)到100%的準(zhǔn)確率D.對(duì)大量不同口音和背景噪音的語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練,可以提升系統(tǒng)的適應(yīng)性8、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模數(shù)據(jù)集上訓(xùn)練好的圖像分類(lèi)模型應(yīng)用到一個(gè)特定的小數(shù)據(jù)集上,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型在新數(shù)據(jù)集上進(jìn)行微調(diào),快速獲得較好的性能B.由于數(shù)據(jù)集差異較大,原模型無(wú)法在新數(shù)據(jù)集上使用,需要重新訓(xùn)練C.遷移學(xué)習(xí)只能在相同領(lǐng)域的任務(wù)之間進(jìn)行,不同領(lǐng)域無(wú)法應(yīng)用D.遷移學(xué)習(xí)會(huì)導(dǎo)致模型過(guò)擬合新數(shù)據(jù)集,降低泛化能力9、人工智能在醫(yī)療影像診斷中的輔助作用越來(lái)越受到重視。假設(shè)一個(gè)醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無(wú)需再進(jìn)行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗(yàn)C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準(zhǔn)確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價(jià)值的幫助10、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類(lèi)任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問(wèn)題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無(wú)需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對(duì)于遷移學(xué)習(xí)的成功至關(guān)重要11、在人工智能的機(jī)器人控制領(lǐng)域,假設(shè)要讓一個(gè)機(jī)器人通過(guò)學(xué)習(xí)來(lái)適應(yīng)不同的環(huán)境和任務(wù),以下關(guān)于機(jī)器人學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以通過(guò)預(yù)先編程來(lái)應(yīng)對(duì)所有可能的情況,無(wú)需學(xué)習(xí)能力B.強(qiáng)化學(xué)習(xí)是機(jī)器人學(xué)習(xí)的唯一有效方法,其他學(xué)習(xí)方法不適用C.機(jī)器人在學(xué)習(xí)過(guò)程中可以通過(guò)與環(huán)境的交互和試錯(cuò)來(lái)不斷改進(jìn)自己的行為D.機(jī)器人的學(xué)習(xí)能力受到硬件限制,無(wú)法達(dá)到與人類(lèi)相似的學(xué)習(xí)效果12、在人工智能的自動(dòng)駕駛領(lǐng)域,為了確保車(chē)輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個(gè)傳感器的數(shù)據(jù)進(jìn)行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學(xué)習(xí)C.基于貝葉斯估計(jì)D.以上都是13、在人工智能的研究中,算法的選擇和優(yōu)化至關(guān)重要。假設(shè)要解決一個(gè)復(fù)雜的優(yōu)化問(wèn)題。以下關(guān)于人工智能算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.遺傳算法通過(guò)模擬生物進(jìn)化過(guò)程來(lái)尋找最優(yōu)解B.蟻群算法受螞蟻覓食行為啟發(fā),適用于求解組合優(yōu)化問(wèn)題C.不同的算法適用于不同類(lèi)型的問(wèn)題,沒(méi)有一種算法能夠通用于所有情況D.算法的性能只取決于其理論復(fù)雜度,與實(shí)際應(yīng)用中的數(shù)據(jù)特點(diǎn)和計(jì)算環(huán)境無(wú)關(guān)14、在自然語(yǔ)言處理領(lǐng)域,情感分析是一項(xiàng)常見(jiàn)的任務(wù)。假設(shè)要分析大量的在線(xiàn)商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的情感傾向是積極、消極還是中性。考慮到語(yǔ)言的復(fù)雜性和多義性,以及評(píng)論中可能存在的諷刺、反語(yǔ)等情況,以下哪種方法在進(jìn)行情感分析時(shí)更為有效?()A.基于詞典的方法,通過(guò)查找情感詞來(lái)判斷情感B.基于規(guī)則的方法,制定一系列的規(guī)則來(lái)判斷情感C.深度學(xué)習(xí)方法,如使用卷積神經(jīng)網(wǎng)絡(luò)對(duì)文本進(jìn)行建模D.人工閱讀和判斷,確保準(zhǔn)確性15、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對(duì)模型的訓(xùn)練和性能有著重要的影響。以下關(guān)于數(shù)據(jù)在人工智能中的作用的描述,不正確的是()A.高質(zhì)量、大規(guī)模的數(shù)據(jù)能夠幫助模型學(xué)習(xí)到更準(zhǔn)確和通用的模式B.數(shù)據(jù)清洗和預(yù)處理是提高數(shù)據(jù)質(zhì)量的重要步驟,可以減少噪聲和錯(cuò)誤C.即使數(shù)據(jù)量較少,通過(guò)巧妙的算法設(shè)計(jì)和模型架構(gòu),也能訓(xùn)練出性能優(yōu)異的人工智能模型D.數(shù)據(jù)的標(biāo)注工作對(duì)于監(jiān)督學(xué)習(xí)非常重要,準(zhǔn)確的標(biāo)注能夠提高模型的學(xué)習(xí)效果16、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,同時(shí)保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過(guò)程中不存在通信開(kāi)銷(xiāo)和安全風(fēng)險(xiǎn)C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型,對(duì)于大規(guī)模和復(fù)雜的任務(wù)不適用17、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個(gè)關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個(gè)用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項(xiàng)是不太可取的?()A.基于經(jīng)驗(yàn)和直覺(jué),隨機(jī)選擇一組超參數(shù)進(jìn)行試驗(yàn)B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實(shí)踐中常用的超參數(shù)設(shè)置D.利用自動(dòng)超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗(yàn)證集的性能自動(dòng)尋找最優(yōu)超參數(shù)18、深度學(xué)習(xí)作為一種強(qiáng)大的人工智能技術(shù),在圖像識(shí)別領(lǐng)域取得了顯著成果。假設(shè)要開(kāi)發(fā)一個(gè)能夠識(shí)別各種動(dòng)物的圖像識(shí)別系統(tǒng),以下關(guān)于深度學(xué)習(xí)在該任務(wù)中的描述,哪一項(xiàng)是不正確的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)常用于圖像特征提取和分類(lèi),能有效識(shí)別動(dòng)物圖像B.深度神經(jīng)網(wǎng)絡(luò)需要大量的標(biāo)注圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.通過(guò)調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以?xún)?yōu)化圖像識(shí)別模型的性能D.深度學(xué)習(xí)模型一旦訓(xùn)練完成,就無(wú)需再進(jìn)行優(yōu)化和改進(jìn),能夠始終保持高精度19、在人工智能的圖像識(shí)別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對(duì)衛(wèi)星圖像中的地物進(jìn)行分類(lèi),以下哪種方法可能會(huì)與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類(lèi)效果?()A.支持向量機(jī)B.決策樹(shù)C.聚類(lèi)分析D.以上都有可能20、在人工智能的智能客服中,以下哪個(gè)能力對(duì)于提高用戶(hù)滿(mǎn)意度最重要?()A.快速準(zhǔn)確地回答問(wèn)題B.理解用戶(hù)的情感和意圖C.提供個(gè)性化的服務(wù)D.主動(dòng)引導(dǎo)用戶(hù)進(jìn)行交流21、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無(wú)需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類(lèi)型和任務(wù),不能跨越不同領(lǐng)域22、在人工智能的情感識(shí)別中,假設(shè)要從一段較長(zhǎng)的語(yǔ)音中準(zhǔn)確捕捉到細(xì)微的情感變化。以下哪種技術(shù)或方法可能有助于實(shí)現(xiàn)這一目標(biāo)?()A.分析語(yǔ)音的韻律特征,如語(yǔ)調(diào)、語(yǔ)速B.只關(guān)注語(yǔ)音的內(nèi)容,忽略語(yǔ)音的表現(xiàn)形式C.對(duì)語(yǔ)音進(jìn)行分段處理,分別進(jìn)行情感識(shí)別D.不進(jìn)行任何預(yù)處理,直接分析原始語(yǔ)音23、人工智能中的智能搜索算法常用于解決復(fù)雜的優(yōu)化問(wèn)題。假設(shè)我們要在一個(gè)大規(guī)模的狀態(tài)空間中尋找最優(yōu)解,例如在物流配送中規(guī)劃最優(yōu)的路線(xiàn)。以下哪種智能搜索算法在處理這類(lèi)問(wèn)題時(shí)可能具有優(yōu)勢(shì)?()A.深度優(yōu)先搜索B.廣度優(yōu)先搜索C.模擬退火算法D.回溯算法24、可解釋性是人工智能模型面臨的一個(gè)重要問(wèn)題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶(hù)理解模型的決策過(guò)程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對(duì)于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級(jí)的差異25、人工智能中的智能客服可以回答用戶(hù)的各種問(wèn)題。假設(shè)我們要評(píng)估一個(gè)智能客服的性能,以下關(guān)于評(píng)估指標(biāo)的說(shuō)法,哪一項(xiàng)是不正確的?()A.回答的準(zhǔn)確性B.響應(yīng)的速度C.語(yǔ)言的優(yōu)美程度D.能夠解決問(wèn)題的復(fù)雜程度26、在人工智能的應(yīng)用中,智能推薦系統(tǒng)越來(lái)越普及。假設(shè)一個(gè)電商平臺(tái)要為用戶(hù)提供個(gè)性化的商品推薦,需要綜合考慮用戶(hù)的歷史購(gòu)買(mǎi)行為、瀏覽記錄和商品的屬性等多方面信息。以下哪種算法或模型在處理這種多源異構(gòu)數(shù)據(jù)的推薦任務(wù)上表現(xiàn)更為出色?()A.協(xié)同過(guò)濾算法B.基于內(nèi)容的推薦算法C.混合推薦算法D.關(guān)聯(lián)規(guī)則挖掘27、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開(kāi)發(fā)一個(gè)能夠識(shí)別水果種類(lèi)的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性28、在人工智能的情感分析任務(wù)中,比如分析社交媒體上用戶(hù)對(duì)某一產(chǎn)品的態(tài)度是積極還是消極,以下哪種特征提取方法可能會(huì)產(chǎn)生重要影響?()A.基于詞袋模型B.基于詞嵌入C.基于語(yǔ)法結(jié)構(gòu)D.基于語(yǔ)義網(wǎng)絡(luò)29、假設(shè)在一個(gè)智能工廠的質(zhì)量檢測(cè)環(huán)節(jié),需要利用人工智能技術(shù)自動(dòng)檢測(cè)產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會(huì)被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)C.基于特征工程的分類(lèi)模型D.以上都是30、在人工智能的自然語(yǔ)言處理領(lǐng)域中,當(dāng)需要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確理解和生成人類(lèi)語(yǔ)言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問(wèn)題時(shí),以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語(yǔ)義理解D.語(yǔ)用分析二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的Keras庫(kù),實(shí)現(xiàn)一個(gè)基于Transformer架構(gòu)的機(jī)器翻譯模型。對(duì)大量的雙語(yǔ)語(yǔ)料進(jìn)行訓(xùn)練,能夠?qū)崿F(xiàn)從一種語(yǔ)言到另一種語(yǔ)言的準(zhǔn)確翻譯。2、(本題5分)使用聚類(lèi)算法對(duì)社交網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的社交話(huà)題和趨勢(shì),為輿情監(jiān)測(cè)和分析提供支持。3、(本題5分)在Python中,運(yùn)用狼群算法優(yōu)化一個(gè)復(fù)雜的工程問(wèn)題。模擬狼群的狩獵行為和分工,展示優(yōu)化結(jié)果和算法性能。4、(本題5分)利用Python中的Keras庫(kù),搭建一個(gè)基于深度強(qiáng)化學(xué)習(xí)的游戲策略?xún)?yōu)化模型,提高游戲中的得分或勝率。5、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)生成式對(duì)抗網(wǎng)絡(luò)(GA
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《食品安全信息報(bào)告》課件
- 合伙合同糾紛權(quán)威訴訟策略
- 《民用建筑構(gòu)造概述》課件
- 2025年阿里貨運(yùn)從業(yè)資格證考試一共多少題
- 2025年臨汾客貨運(yùn)從業(yè)資格證考試教材
- 2025年廣州道路運(yùn)輸從業(yè)資格證考試題和答案
- 2025年興安貨運(yùn)上崗證模擬考試0題
- 《型曲面積分的計(jì)算》課件
- 第一單元 中國(guó)開(kāi)始淪為半殖民地半封建社會(huì) 同步練習(xí) 部編版八年級(jí)歷史上冊(cè)
- 鋁單板商業(yè)步行街施工合同
- 智能制造企業(yè)戰(zhàn)略規(guī)劃
- 李白人物簡(jiǎn)介模板
- 一人出資一人出技術(shù)的合作協(xié)議
- 物資配送管理投標(biāo)方案范本
- pt100-熱電阻分度表-xls
- 預(yù)防校園暴力事件矛盾糾紛排查記錄表
- 定向鉆施工技術(shù)交底記錄
- 新能源發(fā)電技術(shù)概述課件
- 遼寧省葫蘆島市綏中縣遼師大版四年級(jí)上冊(cè)期中階段檢測(cè)英語(yǔ)試卷(原卷版)
- 邏輯思維訓(xùn)練第三章命題
- 加油站設(shè)備及工藝管線(xiàn)安裝工程施工方案
評(píng)論
0/150
提交評(píng)論