版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆浙江省溫州市十五校聯(lián)盟聯(lián)合體高三第二次模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數(shù)為()A.5 B.10 C.20 D.302.已知,則()A. B. C. D.3.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.4.設(shè),是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.5.已知復數(shù),則()A. B. C. D.6.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.3607.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.8.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.9.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.10.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間11.已知集合,則()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則________.14.已知函數(shù),若,則實數(shù)的取值范圍為__________.15.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.16.在的展開式中,各項系數(shù)之和為,則展開式中的常數(shù)項為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標原點,求△面積的最大值及此時直線的方程.18.(12分)已知.(1)已知關(guān)于的不等式有實數(shù)解,求的取值范圍;(2)求不等式的解集.19.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當時,記,求的分布列及數(shù)學期望;(2)當,時,求且的概率.20.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.21.(12分)已知函數(shù).(1)若不等式有解,求實數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實數(shù),,滿足,證明:.22.(10分)已知函數(shù)(1)若,不等式的解集;(2)若,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎(chǔ)題.2、D【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,即當?shù)讛?shù)大于1時單調(diào)遞增,當?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.3、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.4、B【解析】
設(shè)過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設(shè)過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識,考查運算求解、推理論證能力,屬于中檔題.5、B【解析】
利用復數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數(shù)的除法運算、加法運算,考查復數(shù)的模,屬于基礎(chǔ)題.6、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.7、B【解析】
依照偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x),且定義域關(guān)于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).8、A【解析】
設(shè)的中點為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點為O,因為,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因為,所以,解得.因為,所以.設(shè),易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題9、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.10、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題11、C【解析】
解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎(chǔ)題.12、B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學生的計算能力.14、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實數(shù)的取值范圍為.故答案為:【點睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性.15、.【解析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關(guān)系,及與長度有關(guān)的幾何概型,考查了學生分析問題的能力,難度一般.16、【解析】
利用展開式各項系數(shù)之和求得的值,由此寫出展開式的通項,令指數(shù)為零求得參數(shù)的值,代入通項計算即可得解.【詳解】的展開式各項系數(shù)和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數(shù)項為.故答案為:.【點睛】本題考查二項展開式中常數(shù)項的計算,涉及二項展開式中各項系數(shù)和的計算,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)面積的最大值為,此時直線的方程為.【解析】
(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點,,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當且僅當,即時等號成立,因此面積的最大值為,此時直線的方程為.【點睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.18、(1);(2).【解析】
(1)依據(jù)能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點分段法解含有兩個絕對值的不等式即可?!驹斀狻恳驗椴坏仁接袑崝?shù)解,所以因為,所以故。①當時,,所以,故②當時,,所以,故③當時,,所以,故綜上,原不等式的解集為。【點睛】本題主要考查不等式有解問題的解法以及含有兩個絕對值的不等式問題的解法,意在考查零點分段法、絕對值三角不等式和轉(zhuǎn)化思想、分類討論思想的應用。19、(1)見解析,0(2)【解析】
(1)即該選手答完3道題后總得分,可能出現(xiàn)的情況為3道題都答對,答對2道答錯1道,答對1道答錯2道,3道題都答錯,進而求解即可;(2)當時,即答完8題后,正確的題數(shù)為5題,錯誤的題數(shù)是3題,又,則第一題答對,第二題第三題至少有一道答對,進而求解.【詳解】解:(1)的取值可能為,,1,3,又因為,故,,,,所以的分布列為:13所以(2)當時,即答完8題后,正確的題數(shù)為5題,錯誤的題數(shù)是3題,又已知,第一題答對,若第二題回答正確,則其余6題可任意答對3題;若第二題回答錯誤,第三題回答正確,則后5題可任意答對題,此時的概率為(或).【點睛】本題考查二項分布的分布列及期望,考查數(shù)據(jù)處理能力,考查分類討論思想.20、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】
(Ⅰ)連結(jié),,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設(shè),計算,,根據(jù)垂直關(guān)系得到答案.【詳解】(Ⅰ)連結(jié),,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設(shè)平面法向量為,則,連結(jié),可得,又所以,平面,平面的法向量,設(shè)二面角的平面角為,則.(Ⅲ)線段上存在點使得,設(shè),,,,所以點為線段的中點.【點睛】本題考查了線面平行,二面角,根據(jù)垂直關(guān)系確定位置,意在考查學生的計算能力和空間想象能力.21、(1)(2)見解析【解析】
(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當且僅當時等號成立.∴,即.∵.當且僅當,,時等號成立.∴,即成立.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州城市職業(yè)學院《英語教學實踐2》2023-2024學年第一學期期末試卷
- 貴州財經(jīng)大學《基礎(chǔ)護理學基本技能2》2023-2024學年第一學期期末試卷
- 貴陽學院《現(xiàn)代生物科學導論C》2023-2024學年第一學期期末試卷
- 2025海南省建筑安全員C證考試題庫
- 貴陽人文科技學院《自然地理與人文地理學》2023-2024學年第一學期期末試卷
- 廣州珠江職業(yè)技術(shù)學院《信息管理學基礎(chǔ)》2023-2024學年第一學期期末試卷
- 2025年天津市建筑安全員B證考試題庫
- 2025海南建筑安全員C證考試(專職安全員)題庫附答案
- 廣州應用科技學院《裝配式建筑識圖與實務》2023-2024學年第一學期期末試卷
- 2025四川省建筑安全員A證考試題庫及答案
- 啟明計劃工信部青年人才
- 乙酸鈉?;钒踩畔⒖ā⒅苤癕SDS-
- 人工造林項目與其他單位的協(xié)調(diào)配合
- 居家服侍老人協(xié)議書
- (高清版)DZT 0426-2023 固體礦產(chǎn)地質(zhì)調(diào)查規(guī)范(1:50000)
- 2024年-(多附件條款版)個人汽車租賃給公司合同電子版
- 文旅微電影項目策劃
- 建工意外險培訓課件
- 比亞迪電子員工手冊
- 三年級必讀書目《格林童話》閱讀測試題(附答案)
- 人口老齡化社會的挑戰(zhàn)與機遇
評論
0/150
提交評論