版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省某重點中學2025屆高考考前模擬數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種值的表達式紛紛出現,使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內填入的條件為,則正整數的最小值是A. B. C. D.2.已知向量,,若,則()A. B. C. D.3.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數的取值范圍是()A. B. C. D.4.等比數列若則()A.±6 B.6 C.-6 D.5.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.326.已知雙曲線的一個焦點為,點是的一條漸近線上關于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.7.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.8.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]9.若集合,,則=()A. B. C. D.10.已知復數滿足,且,則()A.3 B. C. D.11.用數學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+112.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數,則對應的排法有______種;______;14.對定義在上的函數,如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,,時,總有成立.則稱函數稱為G函數.若是定義在上G函數,則實數a的取值范圍為________.15.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.18.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側面為正方形,求直線與平面所成角的正弦值.19.(12分)一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當時,用表示要補播種的坑的個數,求的分布列與數學期望.20.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.21.(12分)已知函數(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.22.(10分)已知公差不為零的等差數列的前n項和為,,是與的等比中項.(1)求;(2)設數列滿足,,求數列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結束循環(huán),所以判斷框內填入的條件可以是,所以正整數的最小值是3,故選B.2、A【解析】
利用平面向量平行的坐標條件得到參數x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.3、D【解析】
因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.4、B【解析】
根據等比中項性質代入可得解,由等比數列項的性質確定值即可.【詳解】由等比數列中等比中項性質可知,,所以,而由等比數列性質可知奇數項符號相同,所以,故選:B.【點睛】本題考查了等比數列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.5、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.6、B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質,考查直線與圓的位置關系,考查數形結合思想與計算能力,屬于中檔題.7、D【解析】
由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.8、B【解析】
先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.9、C【解析】試題分析:化簡集合故選C.考點:集合的運算.10、C【解析】
設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數的乘法法則的應用,考查共軛復數的應用.11、C【解析】
首先分析題目求用數學歸納法證明1+1+3+…+n1=n4【詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數學歸納法,屬于中檔題./12、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、36;1.【解析】
的可能取值為0,1,2,3,對應的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數,則的可能取值為0,1,2,3,對應的排法有:.∴對應的排法有36種;,,,,∴故答案為:36;1.【點睛】本題考查了排列、組合的應用,離散型隨機變量的分布列以及數學期望,屬于中檔題.14、【解析】
由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數,所以對任意的總有,則對任意的恒成立,解得,當時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:【點睛】本題是一道函數新定義題目,考查了不等式恒成立求參數的取值范圍,考查了學生分析理解能力,屬于中檔題.15、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數的應用,屬于中檔題.16、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)根據面面垂直的性質得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設,利用椎體的體積公式求得,利用導數研究函數的單調性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因為,平面平面,平面平面,平面,所以平面,因為平面,所以.因為,所以,所以,因為,所以平面.(2)解:設,則,四面體的體積.,當時,,單調遞增;當時,,單調遞減.故當時,四面體的體積取得最大值.以為坐標原點,建立空間直角坐標系,則,,,,.設平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】該題考查的是有關立體幾何的問題,涉及到的知識點有面面垂直的性質,線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導數求解體積的最大值.18、(1)證明見解析(2)【解析】
(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點睛】本題主要考查了線面垂直的判定與性質,考查空間向量與空間角的計算,屬于中檔題.19、(1)當或時,有3個坑要補播種的概率最大,最大概率為;(2)見解析.【解析】
(1)將有3個坑需要補種表示成n的函數,考查函數隨n的變化情況,即可得到n為何值時有3個坑要補播種的概率最大.(2)n=1時,X的所有可能的取值為0,1,2,3,1.分別計算出每個變量對應的概率,列出分布列,求期望即可.【詳解】(1)對一個坑而言,要補播種的概率,有3個坑要補播種的概率為.欲使最大,只需,解得,因為,所以當時,;當時,;所以當或時,有3個坑要補播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數學期望.【點睛】本題考查了古典概型的概率求法,離散型隨機變量的概率分布,二項分布,主要考查簡單的計算,屬于中檔題.20、(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.21、(1)(2)32【解析】
利用絕對值不等式的解法求出不等式的解集,得到關于的方程,求出的值即可;由知可得,,利用三個正數的基本不等式,構造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年華東師大版八年級地理下冊月考試卷
- 2025年人教A版九年級歷史上冊月考試卷含答案
- 2025年湘師大新版八年級歷史下冊階段測試試卷含答案
- 2025年新世紀版選擇性必修3歷史上冊月考試卷
- 2025年浙教版九年級地理上冊月考試卷
- 2025年蘇教版選修6歷史下冊月考試卷
- 2025年滬科版選擇性必修3歷史下冊階段測試試卷
- 共享中國知到智慧樹章節(jié)測試課后答案2024年秋上海工程技術大學
- 二零二五年度出租車公司駕駛員勞動合同競業(yè)禁止合同4篇
- 二零二五寵物領養(yǎng)合同范本:寵物福利與責任4篇
- 無人化農場項目可行性研究報告
- 《如何存款最合算》課件
- 社區(qū)團支部工作計劃
- 拖欠工程款上訪信范文
- 2024屆上海市金山區(qū)高三下學期二模英語試題(原卷版)
- 學生春節(jié)安全教育
- 《wifi協(xié)議文庫》課件
- 《好東西》:女作者電影的話語建構與烏托邦想象
- 教培行業(yè)研究系列(七):出國考培的再研究供需變化的新趨勢
- GB/T 44895-2024市場和社會調查調查問卷編制指南
- 道醫(yī)館可行性報告
評論
0/150
提交評論