2025屆甘肅省夏河縣夏河中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
2025屆甘肅省夏河縣夏河中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
2025屆甘肅省夏河縣夏河中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
2025屆甘肅省夏河縣夏河中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
2025屆甘肅省夏河縣夏河中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆甘肅省夏河縣夏河中學(xué)高三第一次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列結(jié)論中正確的個數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.02.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.23.已知雙曲線的離心率為,拋物線的焦點坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.4.若實數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.05.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.6.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.7.已知,則的大小關(guān)系是()A. B. C. D.8.已知是定義在上的奇函數(shù),當(dāng)時,,則()A. B.2 C.3 D.9.已知集合則()A. B. C. D.10.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種11.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.12.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,其準(zhǔn)線與坐標(biāo)軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.14.已知雙曲線的一條漸近線方程為,則________.15.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準(zhǔn)線與圓C相交所得弦長是__________.16.若非零向量,滿足,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點到直線的距離的最大值與最小值.18.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.19.(12分)已知點P在拋物線上,且點P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準(zhǔn)線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.20.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.21.(12分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設(shè)且.(1)求點的坐標(biāo);(2)求的取值范圍.22.(10分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標(biāo);若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當(dāng)且僅當(dāng)時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運算能力和推理能力,屬于中檔題.2、B【解析】

首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.3、A【解析】

求出拋物線的焦點坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.4、C【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【點睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.5、D【解析】

直接利用復(fù)數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復(fù)數(shù)的模的運算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計算能力.6、C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.7、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.8、A【解析】

由奇函數(shù)定義求出和.【詳解】因為是定義在上的奇函數(shù),.又當(dāng)時,,.故選:A.【點睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.9、B【解析】

解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.10、D【解析】

采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題11、B【解析】

根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.【點睛】本題考查函數(shù)周期的求解,涉及對數(shù)運算,屬綜合基礎(chǔ)題.12、A【解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出拋物線焦點坐標(biāo),由,結(jié)合向量的坐標(biāo)運算得,直線方程為,代入拋物線方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標(biāo)表示.直線方程與拋物線方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線與拋物線相交問題的常用方法.14、【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎(chǔ)題.15、【解析】

求出拋物線的焦點坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進(jìn)而求出弦長.【詳解】拋物線E:的準(zhǔn)線為,焦點為(0,1),把焦點的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長.【點睛】本題考查了拋物線的準(zhǔn)線、圓的弦長公式.16、1【解析】

根據(jù)向量的模長公式以及數(shù)量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數(shù)量積公式以及模長公式的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)最大值,最小值【解析】

(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標(biāo)方程,展開有,再根據(jù)求解.(2)因為曲線C是一個半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數(shù)方程為所以兩式平方相加得:因為直線的極坐標(biāo)方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數(shù)方程,普通方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.18、(1);(2)證明見詳解,【解析】

(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項為,公比為的等比數(shù)列所以【點睛】本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗觀察能力以及分析能力,屬中檔題.19、(1)(2)4【解析】

(1)將點P橫坐標(biāo)代入拋物線中求得點P的坐標(biāo),利用點P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計算的值即可.【詳解】(1)將點P橫坐標(biāo)代入中,求得,∴P(2,),,點P到準(zhǔn)線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問題,考查轉(zhuǎn)化思想以及計算能力,是中檔題.20、(1)見解析;(2)【解析】

(1)設(shè)中點為,連接、,首先通過條件得出,加,可得,進(jìn)而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標(biāo)系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標(biāo)系(如圖),則,,,.,,設(shè)平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論