2024年廣東省深圳市中考數(shù)學(xué)二模試題匯編《方程與不等式》含答案_第1頁
2024年廣東省深圳市中考數(shù)學(xué)二模試題匯編《方程與不等式》含答案_第2頁
2024年廣東省深圳市中考數(shù)學(xué)二模試題匯編《方程與不等式》含答案_第3頁
2024年廣東省深圳市中考數(shù)學(xué)二模試題匯編《方程與不等式》含答案_第4頁
2024年廣東省深圳市中考數(shù)學(xué)二模試題匯編《方程與不等式》含答案_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

試題PAGE1試題廣東省深圳市2024年中考數(shù)學(xué)二模試題按知識點分層匯編-02方程與不等式一.選擇題(共15小題)1.(2024?龍華區(qū)二模)數(shù)學(xué)家斐波那契編寫的《算經(jīng)》中有如下問題:一組人平分10元錢,每人分得若干;若再加上6人,平分40元錢,則第二次每人所得與第一次相同,求第一次分錢的人數(shù).設(shè)第一次分錢的人數(shù)為x人,則可列方程()A.10x=40x+6 B.10x=2.(2024?羅湖區(qū)二模)某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率,設(shè)每次降價的百分率為x,下面所列的方程中正確的是()A.560(1+x)2=315 B.560(1﹣x2)=315 C.560(1﹣2x)=315 D.560(1﹣x)2=3153.(2024?寶安區(qū)二模)不等式2x﹣3≥3x+1的解集在數(shù)軸上表示為()A. B. C. D.4.(2024?南山區(qū)二模)成語“朝三暮四”講述了一位老翁喂養(yǎng)猴子的故事,老翁為了限定猴子的食量分早晚兩次投喂,早上的糧食是晚上的34,猴子們對于這個安排很不滿意,于是老翁進行調(diào)整,從晚上的糧食中取2千克放在早上投喂,這樣早上的糧食是晚上的43,猴子們對這樣的安排非常滿意.設(shè)調(diào)整前早上的糧食是x千克,晚上的糧食是A.x=43yx+2=C.x=34y5.(2024?福田區(qū)二模)如圖,若設(shè)從2019年到2021年我國海上風(fēng)電新增裝機容量的平均增長率為x,根據(jù)這個統(tǒng)計圖可知,x應(yīng)滿足()A.x=14.5%+54.5%+452.3%B.14.5%(1+x)2=452.3% C.1.98(1+x)2=16.9 D.1.73(1+x)2=3.066.(2024?寶安區(qū)二模)龍泉窯是中國歷史上的一個名窯,宋代六大窯系,某龍泉窯瓷器工廠燒制龍泉青瓷茶具,每套茶具由1個茶壺和6只茶杯組成,用1千克瓷泥可做3個茶壺或9只茶杯,現(xiàn)要用6千克瓷泥制作這些茶具,設(shè)用x千克瓷泥做茶壺時,恰好使制作的茶壺和茶杯配套,則可列方程為()A.6×3x=1×9(6﹣x) B.1×3x=6×9(6﹣x) C.3x=9(6﹣x) D.3x=6(6﹣x)7.(2024?福田區(qū)二模)請欣賞我國古典文學(xué)名著《西游記》描述孫悟空追妖精的數(shù)學(xué)詩:悟空順風(fēng)探妖蹤,千里只行四分鐘,歸時四分行六百,風(fēng)速多少才稱雄?解釋:孫悟空順風(fēng)去查妖精的行蹤,4分鐘就飛躍1000里,逆風(fēng)返回時4分鐘走了600里.若設(shè)孫悟空的速度為x里/分鐘,風(fēng)速為y里/分鐘,則可列方程組()A.4x+y=6004x?y=1000B.4(x+y)=6004(x?y)=1000C.4x+y=10004x?y=600D.4(x+y)=10008.(2024?龍崗區(qū)二模)深圳寶安國際機場是深圳對外交往的重要平臺,旅客從市民中心前往寶安機場有兩條線路,路線一:走深南大道經(jīng)寶安大道,全程是30千米,但交通比較擁堵;路線二:走深南大道轉(zhuǎn)京港澳高速,全程是36千米,平均速度是路線一的43倍,因此到寶安機場的時間比走路線一少用5分鐘.設(shè)走路線一到達寶安機場需要xA.43×30xC.30x=49.(2024?龍崗區(qū)二模)寒冷的冬天,在大風(fēng)的加持下,人們會感覺格外冷,這種因風(fēng)引起,使體感溫度較實際氣溫低的現(xiàn)象被稱作風(fēng)寒效應(yīng).風(fēng)寒指數(shù)是對風(fēng)寒效應(yīng)的度量.當(dāng)溫度為﹣10℃時,風(fēng)寒指數(shù)w與風(fēng)速v的關(guān)系如圖所示,若風(fēng)速v大于10,則風(fēng)寒指數(shù)w的取值范圍為()A.w>7 B.w<0 C.w<7 D.w<1410.(2024?鹽田區(qū)二模)已知不等式組x?a>1x+1<b的解集是﹣1<x<0,則(a+bA.﹣1 B.1 C.0 D.202411.(2024?龍華區(qū)二模)一元一次不等式組x+1≥02x<4A. B. C. D.12.(2024?寶安區(qū)二模)現(xiàn)有x輛載重6噸的卡車運一批重y噸的貨物,若每輛卡車裝5噸,則剩下2噸貨物;若每輛卡車裝滿后,最后一輛卡車只需裝4噸,即可裝滿所有貨物.根據(jù)題意,可列方程(組)()A.5x+2=6(x﹣1)+4 B.5x+2=6x﹣4 C.5x?y=2y?6(x?1)=413.(2024?光明區(qū)二模)把不等式組x+3>22x?1A. B. C. D.14.(2024?福田區(qū)二模)甲乙兩地間公路長300千米,為適應(yīng)經(jīng)濟發(fā)展,甲地通往乙地的客車的速度比原來每小時增加了40千米,時間縮短了1.5小時.若設(shè)客車原來的速度為每小時x千米,則下列方程中符合題意的是()A.300x?40=300xC.300x=30015.(2024?鹽田區(qū)二模)《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,是《算經(jīng)十書》之一,書中記載了這樣一個題目:今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?其大意是:用一根繩子去量一根長木,繩子還剩余4.5尺;將繩子對折再量長木,長木還剩余1尺,問木長多少尺?設(shè)木長x尺,則可列方程為()A.12(x+4.5)=x﹣1 B.12(x+4.5)=xC.12(x+1)=x﹣4.5 D.12(x﹣1)=二.填空題(共10小題)16.(2024?寶安區(qū)二模)關(guān)于x的方程x2+mx+6=0的一個根為﹣2,則另一個根是.17.(2024?福田區(qū)二模)如圖1,“幻方”源于我國古代夏禹時期的“洛書”.把“洛書”用今天的數(shù)學(xué)符號翻譯出來,就是一個三階幻方、三階幻方中,要求每行、每列及對角線上的三個數(shù)的和都相等.小明在如圖2的格子中填入了代數(shù)式,若它們能滿足三階幻方要求,則x+y﹣3=.18.(2024?南山區(qū)二模)若a,b是關(guān)于x的方程x2﹣2x﹣2022=0的兩個實數(shù)根,則a2﹣3a﹣b=.19.(2024?龍華區(qū)二模)已知m是一元二次方程x2+2x﹣3=0的一個根,則2m2+4m的值為.20.(2024?寶安區(qū)二模)若x=1是一元二次方程x2+mx﹣1=0的一個根,則m的值是.21.(2024?福田區(qū)二模)若關(guān)于x的一元一次不等式組x?1>0x<a有2個整數(shù)解,則a22.(2024?光明區(qū)二模)若關(guān)于x的一元二次方程x2﹣2x+a=0有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是.23.(2024?南山區(qū)二模)分式方程4x?2=224.(2024?坪山區(qū)二模)已知α是方程x2﹣x﹣2=0的一個根,則代數(shù)式2024﹣2α2+2α的值是.25.(2024?南山區(qū)二模)已知一元二次方程x2﹣5x+2m=0有一個根為2,則另一根為.三.解答題(共5小題)26.(2024?龍華區(qū)二模)投壺是中國古代的一種弓箭投擲游戲,弓箭投入壺內(nèi)、壺耳會得到不同的分?jǐn)?shù),落在地上不得分.小龍與小華每人拿10支箭進行游戲,游戲結(jié)果如下:投入壺內(nèi)投入壺耳落在地上總分小龍3支4支3支27分小華3支3支4支24分(1)求一支弓箭投入壺內(nèi)、壺耳各得幾分?(2)小麗也加入游戲,投完10支箭后,有2支弓箭落到了地上,若小麗贏得了比賽,則她至少投入壺內(nèi)幾支箭?27.(2024?福田區(qū)二模)某商店需要購進甲、乙兩種商品共200件,其進價和售價如下表:甲乙進價(元/件)1435售價(元/件)2045(1)若商店計劃銷售完這批商品后能獲利1680元,問甲、乙兩種商品應(yīng)分別購進多少件?(2)若商店計劃投入資金小于5320元,且銷售完這批商品后獲利大于1660元,請問有幾種購貨方案?并求出其中獲利最大的購貨方案.28.(2024?羅湖區(qū)二模)2023年“爾濱”厚積薄發(fā),旅游業(yè)火爆出圈,某紀(jì)念品經(jīng)銷店欲購進A、B兩種紀(jì)念品,用900元購進的A種紀(jì)念品與用1200元購進的B種紀(jì)念品的數(shù)量相同,每件B種紀(jì)念品的進價比每件A種紀(jì)念品的進價多5元.(1)求A、B兩種紀(jì)念品每件的進價分別為多少元?(2)若該紀(jì)念品經(jīng)銷店A種紀(jì)念品每件售價18元,B種紀(jì)念品每件售價25元,這兩種紀(jì)念品共購進500件,且這兩種紀(jì)念品全部售出后總獲利不低于1700元,求A種紀(jì)念品最多購進多少件.29.(2024?福田區(qū)二模)某茶葉店用21000元購進A等級茶葉若干盒,用6000元購進B等級茶葉若干盒,所購A等級茶葉比B等級茶葉多8盒,已知A等級茶葉的每盒進價是B等級茶葉每盒進價的3倍.(1)求A,B兩種等級茶葉的每盒進價分別為多少元?(2)當(dāng)購進的所有茶葉全部售完后,茶葉店再次以相同的進價購進A,B兩種等級茶葉共90盒,但購茶的總預(yù)算控制在3萬元以內(nèi).若A等級茶葉的售價是每盒450元,B等級茶葉的售價是每盒150元,則A,B兩種等級茶葉分別購進多少盒時可使利潤最大?最大利潤是多少?30.(2024?坪山區(qū)二模)解方程:x2﹣2x=2x+1.

廣東省深圳市2024年中考數(shù)學(xué)二模試題按知識點分層匯編-02方程與不等式參考答案與試題解析一.選擇題(共15小題)1.(2024?龍華區(qū)二模)數(shù)學(xué)家斐波那契編寫的《算經(jīng)》中有如下問題:一組人平分10元錢,每人分得若干;若再加上6人,平分40元錢,則第二次每人所得與第一次相同,求第一次分錢的人數(shù).設(shè)第一次分錢的人數(shù)為x人,則可列方程()A.10x=40x+6 B.10x=【解答】解:設(shè)第一次分錢的人數(shù)為x人,則第二次分錢的人數(shù)為(x+6)人,依題意得:10x故選:A.2.(2024?羅湖區(qū)二模)某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率,設(shè)每次降價的百分率為x,下面所列的方程中正確的是()A.560(1+x)2=315 B.560(1﹣x2)=315 C.560(1﹣2x)=315 D.560(1﹣x)2=315【解答】解:設(shè)每次降價的百分率為x,由題意得:560(1﹣x)2=315,故選:D.3.(2024?寶安區(qū)二模)不等式2x﹣3≥3x+1的解集在數(shù)軸上表示為()A. B. C. D.【解答】解:2x﹣3≥3x+1,移項得:2x﹣3x≥1+3,合并同類項得:﹣x≥4,系數(shù)化1得:x≤﹣4.在數(shù)軸上表示為:故選:D.4.(2024?南山區(qū)二模)成語“朝三暮四”講述了一位老翁喂養(yǎng)猴子的故事,老翁為了限定猴子的食量分早晚兩次投喂,早上的糧食是晚上的34,猴子們對于這個安排很不滿意,于是老翁進行調(diào)整,從晚上的糧食中取2千克放在早上投喂,這樣早上的糧食是晚上的43,猴子們對這樣的安排非常滿意.設(shè)調(diào)整前早上的糧食是x千克,晚上的糧食是A.x=43yx+2=C.x=34y【解答】解:∵調(diào)整前早上的糧食是x千克,晚上的糧食是y千克,且早上的糧食是晚上的34∴x=3∵老翁從晚上的糧食中取2千克放在早上投喂后,∴早上糧食為(x+2)千克,晚上糧食為(y﹣2)千克,∵調(diào)整后早上的糧食是晚上的43∴x+2=4∴可列方程組x=3故選:B.5.(2024?福田區(qū)二模)如圖,若設(shè)從2019年到2021年我國海上風(fēng)電新增裝機容量的平均增長率為x,根據(jù)這個統(tǒng)計圖可知,x應(yīng)滿足()A.x=14.5%+54.5%+452.3%B.14.5%(1+x)2=452.3% C.1.98(1+x)2=16.9 D.1.73(1+x)2=3.06【解答】解:依題意得:1.98(1+x)2=16.9.故選:C.6.(2024?寶安區(qū)二模)龍泉窯是中國歷史上的一個名窯,宋代六大窯系,某龍泉窯瓷器工廠燒制龍泉青瓷茶具,每套茶具由1個茶壺和6只茶杯組成,用1千克瓷泥可做3個茶壺或9只茶杯,現(xiàn)要用6千克瓷泥制作這些茶具,設(shè)用x千克瓷泥做茶壺時,恰好使制作的茶壺和茶杯配套,則可列方程為()A.6×3x=1×9(6﹣x) B.1×3x=6×9(6﹣x) C.3x=9(6﹣x) D.3x=6(6﹣x)【解答】解:設(shè)用x千克瓷泥做茶壺,則用(6﹣x)千克瓷泥做茶杯,根據(jù)題意得:6×3x=9(6﹣x).故選:A.7.(2024?福田區(qū)二模)請欣賞我國古典文學(xué)名著《西游記》描述孫悟空追妖精的數(shù)學(xué)詩:悟空順風(fēng)探妖蹤,千里只行四分鐘,歸時四分行六百,風(fēng)速多少才稱雄?解釋:孫悟空順風(fēng)去查妖精的行蹤,4分鐘就飛躍1000里,逆風(fēng)返回時4分鐘走了600里.若設(shè)孫悟空的速度為x里/分鐘,風(fēng)速為y里/分鐘,則可列方程組()A.4x+y=6004x?y=1000B.4(x+y)=6004(x?y)=1000C.4x+y=10004x?y=600D.4(x+y)=1000【解答】解:設(shè)孫悟空的速度為x里/分鐘,風(fēng)速為y里/分鐘,則可列方程組為:4(x+y)=10004(x?y)=600故選:D.8.(2024?龍崗區(qū)二模)深圳寶安國際機場是深圳對外交往的重要平臺,旅客從市民中心前往寶安機場有兩條線路,路線一:走深南大道經(jīng)寶安大道,全程是30千米,但交通比較擁堵;路線二:走深南大道轉(zhuǎn)京港澳高速,全程是36千米,平均速度是路線一的43倍,因此到寶安機場的時間比走路線一少用5分鐘.設(shè)走路線一到達寶安機場需要xA.43×30xC.30x=4【解答】解:設(shè)走路線一到達寶安機場需要x分鐘,則走路線二到寶安機場需要(x﹣5)分鐘,根據(jù)題意,得43故選:D.9.(2024?龍崗區(qū)二模)寒冷的冬天,在大風(fēng)的加持下,人們會感覺格外冷,這種因風(fēng)引起,使體感溫度較實際氣溫低的現(xiàn)象被稱作風(fēng)寒效應(yīng).風(fēng)寒指數(shù)是對風(fēng)寒效應(yīng)的度量.當(dāng)溫度為﹣10℃時,風(fēng)寒指數(shù)w與風(fēng)速v的關(guān)系如圖所示,若風(fēng)速v大于10,則風(fēng)寒指數(shù)w的取值范圍為()A.w>7 B.w<0 C.w<7 D.w<14【解答】解:由圖象可知,風(fēng)寒指數(shù)w與風(fēng)速v的關(guān)系是w=?7∴v=107(14﹣∵風(fēng)速v大于10,∴107(14﹣w解得w<7.故選:C.10.(2024?鹽田區(qū)二模)已知不等式組x?a>1x+1<b的解集是﹣1<x<0,則(a+bA.﹣1 B.1 C.0 D.2024【解答】解:由x﹣a>1得:x>a+1,由x+1<b得:x<b﹣1,∵解集為﹣1<x<0,∴a+1=﹣1,b﹣1=0,解得a=﹣2,b=1,則原式=(﹣2+1)2024=(﹣1)2024=1,故選:B.11.(2024?龍華區(qū)二模)一元一次不等式組x+1≥02x<4A. B. C. D.【解答】解:由x+1≥0得:x≥﹣1,由2x<4得:x<2,則不等式組的解集為﹣1≤x<2,故選:A.12.(2024?寶安區(qū)二模)現(xiàn)有x輛載重6噸的卡車運一批重y噸的貨物,若每輛卡車裝5噸,則剩下2噸貨物;若每輛卡車裝滿后,最后一輛卡車只需裝4噸,即可裝滿所有貨物.根據(jù)題意,可列方程(組)()A.5x+2=6(x﹣1)+4 B.5x+2=6x﹣4 C.5x?y=2y?6(x?1)=4【解答】解:根據(jù)每輛卡車裝5噸,則剩下2噸貨物,可得y﹣5x=2,即y=5x+2,根據(jù)每輛卡車裝滿后,最后一輛卡車只需裝4噸,即可裝滿所有貨物,可得y﹣6(x﹣1)=4,∴得一元一次方程為5x+2=6(x﹣1)+4或者方程組為y?5x=2y?6(x?1)=2故選:A.13.(2024?光明區(qū)二模)把不等式組x+3>22x?1A. B. C. D.【解答】解:x+3>2①2x?1由①得:x>﹣1,由②得:x≤2,∴不等式組的解集為:﹣1<x≤2,在數(shù)軸上表示如下:故選:B.14.(2024?福田區(qū)二模)甲乙兩地間公路長300千米,為適應(yīng)經(jīng)濟發(fā)展,甲地通往乙地的客車的速度比原來每小時增加了40千米,時間縮短了1.5小時.若設(shè)客車原來的速度為每小時x千米,則下列方程中符合題意的是()A.300x?40=300xC.300x=300【解答】解:由題意,得300x故選:C.15.(2024?鹽田區(qū)二模)《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,是《算經(jīng)十書》之一,書中記載了這樣一個題目:今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?其大意是:用一根繩子去量一根長木,繩子還剩余4.5尺;將繩子對折再量長木,長木還剩余1尺,問木長多少尺?設(shè)木長x尺,則可列方程為()A.12(x+4.5)=x﹣1 B.12(x+4.5)=xC.12(x+1)=x﹣4.5 D.12(x﹣1)=【解答】解:設(shè)木長x尺,根據(jù)題意可得:12故選:A.二.填空題(共10小題)16.(2024?寶安區(qū)二模)關(guān)于x的方程x2+mx+6=0的一個根為﹣2,則另一個根是﹣3.【解答】解:∵設(shè)方程x2+x+m=0的根為x1,x2,∴x1x2=6,∵﹣2是方程x2+mx+6=0的一個根,∴﹣2x2=6,∴x2=﹣3,故答案為:﹣3.17.(2024?福田區(qū)二模)如圖1,“幻方”源于我國古代夏禹時期的“洛書”.把“洛書”用今天的數(shù)學(xué)符號翻譯出來,就是一個三階幻方、三階幻方中,要求每行、每列及對角線上的三個數(shù)的和都相等.小明在如圖2的格子中填入了代數(shù)式,若它們能滿足三階幻方要求,則x+y﹣3=﹣4.【解答】解:由題意得:?1+x+x解得:x=?∴x+y﹣3=﹣2+1﹣3=﹣4,故答案為:﹣4.18.(2024?南山區(qū)二模)若a,b是關(guān)于x的方程x2﹣2x﹣2022=0的兩個實數(shù)根,則a2﹣3a﹣b=2020.【解答】解:∵a,b是方程x2﹣2x﹣2022=0的兩根,∴a2﹣2a﹣2022=0,a+b=2,∴a2﹣2a=2022,∴a2﹣3a﹣b=a2﹣2a﹣(a+b)=2022﹣2=2020,故答案為:2020.19.(2024?龍華區(qū)二模)已知m是一元二次方程x2+2x﹣3=0的一個根,則2m2+4m的值為6.【解答】解:∵m是一元二次方程x2+2x﹣3=0的一個根,∴m2+2m﹣3=0,∴m2+2m=3,∴2m2+4m=2(m2+2m)=2×3=6.故答案為:6.20.(2024?寶安區(qū)二模)若x=1是一元二次方程x2+mx﹣1=0的一個根,則m的值是0.【解答】解:把x=1代入方程x2+mx﹣1=0得1+m﹣1=0,解得m=0,即m的值為0.故答案為:0.21.(2024?福田區(qū)二模)若關(guān)于x的一元一次不等式組x?1>0x<a有2個整數(shù)解,則a的取值范圍是3<【解答】解:解不等式x﹣1>0,得:x>1,則不等式組的解集為1<x<a,∵不等式組有2個整數(shù)解,∴不等式組的整數(shù)解為2、3,則3<a≤4,故答案為:3<a≤4.22.(2024?光明區(qū)二模)若關(guān)于x的一元二次方程x2﹣2x+a=0有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是a<1.【解答】解:∵關(guān)于x的一元二次方程x2﹣2x+a=0有兩個不相等的實數(shù)根,∴Δ=b2﹣4ac=(﹣2)2﹣4×a=4﹣4a>0,解得:a<1,∴a的取值范圍是:a<1.故答案為:a<1.23.(2024?南山區(qū)二模)分式方程4x?2=2x的解是【解答】解:4x?2方程兩邊同乘x(x﹣2),去分母得4x=2(x﹣2),解這個整式方程得x=﹣2,檢驗:把x=﹣2代入x(x﹣2)≠0,∴x=﹣2是分式方程的解.故答案為:x=﹣2.24.(2024?坪山區(qū)二模)已知α是方程x2﹣x﹣2=0的一個根,則代數(shù)式2024﹣2α2+2α的值是2020.【解答】解:∵α是方程x2﹣x﹣2=0的一個根,∴α2﹣α﹣2=0,∴α2﹣α=2,∴2024﹣2α2+2α=2024﹣2(α2﹣α)=2024﹣2×2=2020.故答案為:2020.25.(2024?南山區(qū)二模)已知一元二次方程x2﹣5x+2m=0有一個根為2,則另一根為3.【解答】解:設(shè)方程的另一根為α,則α+2=5,解得α=3.故答案為:3.三.解答題(共5小題)26.(2024?龍華區(qū)二模)投壺是中國古代的一種弓箭投擲游戲,弓箭投入壺內(nèi)、壺耳會得到不同的分?jǐn)?shù),落在地上不得分.小龍與小華每人拿10支箭進行游戲,游戲結(jié)果如下:投入壺內(nèi)投入壺耳落在地上總分小龍3支4支3支27分小華3支3支4支24分(1)求一支弓箭投入壺內(nèi)、壺耳各得幾分?(2)小麗也加入游戲,投完10支箭后,有2支弓箭落到了地上,若小麗贏得了比賽,則她至少投入壺內(nèi)幾支箭?【解答】解:(1)設(shè)一支弓箭投入壺內(nèi)、壺耳分別得x分,y分,根據(jù)題意,得3x+4y=273x+3y=24解得x=5y=3答:一支弓箭投入壺內(nèi)、壺耳分別得(5分),(3分);(2)設(shè)小麗投入壺內(nèi)a支箭,則投入壺中(8﹣a)支,根據(jù)題意,得5a+3(8﹣a)>27,解得a>3∵小麗投入壺內(nèi)箭的支數(shù)為整數(shù),∴她至少投入壺內(nèi)2支箭.27.(2024?福田區(qū)二模)某商店需要購進甲、乙兩種商品共200件,其進價和售價如下表:甲乙進價(元/件)1435售價(元/件)2045(1)若商店計劃銷售完這批商品后能獲利1680元,問甲、乙兩種商品應(yīng)分別購進多少件?(2)若商店計劃投入資金小于5320元,且銷售完這批商品后獲利大于1660元,請問有幾種購貨方案?并求出其中獲利最大的購貨方案.【解答】解:(1)設(shè)甲種商品購進x件,乙種商品購進y件,依題意得:x+y=200(20?14)x+(45?35)y=1680解得:x=80y=120答:甲種商品購進80件,乙種商品購進120件.(2)設(shè)甲種商品購進m件,則乙種商品購進(200﹣m)件,依題意得:14m+35(200?解得:80<m<85,又∵m為非負整數(shù),∴m可以為81,82,83,84,∴該商店共有4種購貨方案.設(shè)銷售完這批商品后獲利w元,則w=(20﹣14)m+(45﹣35)(200﹣m)=﹣4m+2000,∵﹣4<0,∴w隨m的增大而減小,∴當(dāng)m=81時,w取得最大值,即甲種商品購進81件、乙種商品購進119件時,該商店銷售完這批商品后獲利最大.28.(2024?羅湖區(qū)二模)2023年“爾濱”厚積薄發(fā),旅游業(yè)火爆出圈,某紀(jì)念品經(jīng)銷店欲購進A、B兩種紀(jì)念品,用900元購進的A種紀(jì)念品與用1200元購進的B種紀(jì)念品的數(shù)量相同,每件B種紀(jì)念品的進價比每件A種紀(jì)念品的進價多5元.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論