四川文化產(chǎn)業(yè)職業(yè)學(xué)院《美術(shù)與廣告設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
四川文化產(chǎn)業(yè)職業(yè)學(xué)院《美術(shù)與廣告設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
四川文化產(chǎn)業(yè)職業(yè)學(xué)院《美術(shù)與廣告設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
四川文化產(chǎn)業(yè)職業(yè)學(xué)院《美術(shù)與廣告設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
四川文化產(chǎn)業(yè)職業(yè)學(xué)院《美術(shù)與廣告設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)四川文化產(chǎn)業(yè)職業(yè)學(xué)院《實(shí)用美術(shù)與廣告設(shè)計(jì)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,我們需要從多幅二維圖像中恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺(jué)的重建方法B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進(jìn)行重建D.基于模型擬合的重建方法2、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行圖像檢索任務(wù),例如在海量圖像庫(kù)中查找相似的圖像,以下哪種圖像表示方法可能對(duì)檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學(xué)習(xí)特征D.以上都是3、計(jì)算機(jī)視覺(jué)中的姿態(tài)估計(jì)任務(wù),確定物體在空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計(jì)方法在復(fù)雜環(huán)境中總是能夠準(zhǔn)確估計(jì)姿態(tài)B.深度學(xué)習(xí)中的端到端姿態(tài)估計(jì)網(wǎng)絡(luò)不需要對(duì)物體的結(jié)構(gòu)和運(yùn)動(dòng)有先驗(yàn)了解C.姿態(tài)估計(jì)的結(jié)果不受相機(jī)參數(shù)和拍攝角度的影響D.結(jié)合多種傳感器數(shù)據(jù)和深度學(xué)習(xí)的方法可以提高姿態(tài)估計(jì)的精度和魯棒性4、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來(lái)判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來(lái)描述動(dòng)作5、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類型的車輛,例如轎車、卡車和摩托車。圖像中的車輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡(jiǎn)單的模板匹配方法,根據(jù)預(yù)先定義的車輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類6、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有廣泛應(yīng)用。假設(shè)要通過(guò)監(jiān)控?cái)z像頭實(shí)時(shí)檢測(cè)人群中的異常行為,以下哪種方法可能需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練?()A.基于規(guī)則的方法B.基于深度學(xué)習(xí)的方法C.基于背景減除的方法D.基于幀差法的方法7、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型8、計(jì)算機(jī)視覺(jué)中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場(chǎng)景下仍然有效B.深度學(xué)習(xí)中的自動(dòng)特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測(cè)等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息9、在計(jì)算機(jī)視覺(jué)的目標(biāo)檢測(cè)中,對(duì)于小目標(biāo)的檢測(cè)往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測(cè)的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是10、在計(jì)算機(jī)視覺(jué)的人臉識(shí)別任務(wù)中,假設(shè)要在一個(gè)大型數(shù)據(jù)庫(kù)中快速準(zhǔn)確地識(shí)別出特定人物的面部。數(shù)據(jù)庫(kù)中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識(shí)別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機(jī)選擇人臉特征進(jìn)行匹配11、計(jì)算機(jī)視覺(jué)中的遙感圖像分析用于獲取地球表面的信息。假設(shè)要從衛(wèi)星遙感圖像中分析土地利用類型和植被覆蓋情況,同時(shí)要克服圖像的大尺度和復(fù)雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對(duì)象的圖像分析D.基于深度學(xué)習(xí)的分析12、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡(jiǎn)單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果13、計(jì)算機(jī)視覺(jué)中的行人重識(shí)別是在不同攝像頭拍攝的圖像或視頻中識(shí)別出特定的行人。以下關(guān)于行人重識(shí)別的敘述,不正確的是()A.行人重識(shí)別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識(shí)別任務(wù)中取得了顯著的性能提升C.行人重識(shí)別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識(shí)別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達(dá)到100%的準(zhǔn)確率14、當(dāng)進(jìn)行圖像的目標(biāo)計(jì)數(shù)任務(wù)時(shí),假設(shè)要統(tǒng)計(jì)一張圖像中某種物體的數(shù)量,例如統(tǒng)計(jì)羊群中的羊的數(shù)量。以下哪種方法可能更準(zhǔn)確地完成計(jì)數(shù)任務(wù)?()A.基于深度學(xué)習(xí)的目標(biāo)計(jì)數(shù)模型B.手動(dòng)逐個(gè)計(jì)數(shù)C.估計(jì)圖像中物體的平均大小,然后計(jì)算總面積來(lái)推算數(shù)量D.隨機(jī)猜測(cè)物體的數(shù)量15、在計(jì)算機(jī)視覺(jué)的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問(wèn)題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對(duì)分類模型的影響?()A.對(duì)少數(shù)類進(jìn)行過(guò)采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練16、對(duì)于圖像的語(yǔ)義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂(lè)會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語(yǔ)義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語(yǔ)義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡(jiǎn)單的分類,不進(jìn)行深入的語(yǔ)義分析D.隨機(jī)猜測(cè)圖像的語(yǔ)義17、計(jì)算機(jī)視覺(jué)中的手勢(shì)識(shí)別用于理解人的手勢(shì)動(dòng)作。假設(shè)要在一個(gè)智能交互系統(tǒng)中實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的手勢(shì)識(shí)別,以下關(guān)于手勢(shì)識(shí)別方法的描述,正確的是:()A.基于傳感器的手勢(shì)識(shí)別方法能夠精確獲取手勢(shì)的運(yùn)動(dòng)信息,但佩戴傳感器不方便B.基于視覺(jué)的手勢(shì)識(shí)別方法不受環(huán)境光照和背景的影響,識(shí)別穩(wěn)定性高C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在手勢(shì)識(shí)別中無(wú)法處理復(fù)雜的手勢(shì)變化和遮擋D.手勢(shì)識(shí)別系統(tǒng)只要能夠識(shí)別常見(jiàn)的幾種手勢(shì),就能夠滿足大多數(shù)應(yīng)用需求18、計(jì)算機(jī)視覺(jué)在安防領(lǐng)域的應(yīng)用可以加強(qiáng)監(jiān)控和預(yù)警能力。假設(shè)要通過(guò)攝像頭實(shí)時(shí)監(jiān)測(cè)公共場(chǎng)所的異常行為,以下關(guān)于安防計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的運(yùn)動(dòng)檢測(cè)算法就能準(zhǔn)確識(shí)別各種異常行為B.不考慮人群密度和環(huán)境背景對(duì)異常行為檢測(cè)的影響C.結(jié)合深度學(xué)習(xí)和行為分析模型可以提高異常行為檢測(cè)的準(zhǔn)確性和及時(shí)性D.安防領(lǐng)域的計(jì)算機(jī)視覺(jué)系統(tǒng)不需要考慮隱私保護(hù)和數(shù)據(jù)安全問(wèn)題19、在計(jì)算機(jī)視覺(jué)的自動(dòng)駕駛應(yīng)用中,車輛需要準(zhǔn)確識(shí)別道路標(biāo)志、交通信號(hào)燈和其他車輛的狀態(tài)。對(duì)于實(shí)時(shí)性和準(zhǔn)確性要求極高的場(chǎng)景,以下哪種傳感器融合技術(shù)能夠?yàn)檐囕v提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達(dá)的融合B.毫米波雷達(dá)與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是20、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,假設(shè)要從海量的圖像庫(kù)中快速找到與給定圖像相似的圖像。以下關(guān)于圖像特征表示的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機(jī)選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋計(jì)算機(jī)視覺(jué)在造紙業(yè)中的質(zhì)量控制。2、(本題5分)計(jì)算機(jī)視覺(jué)中如何利用深度學(xué)習(xí)進(jìn)行圖像分類?3、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺(jué)在彩票行業(yè)中的作用。4、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的模型蒸餾技術(shù)。5、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的車牌識(shí)別技術(shù)。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一款具有未來(lái)感的汽車內(nèi)飾設(shè)計(jì),剖析其如何通過(guò)材質(zhì)、色彩、功能布局等元素為駕駛者和乘客提供舒適和便捷的體驗(yàn)。2、(本題5分)觀察某電子產(chǎn)品品牌的廣告設(shè)計(jì),闡述其如何通過(guò)視覺(jué)效果展示產(chǎn)品的創(chuàng)新和吸引消費(fèi)者購(gòu)買。3、(本題5分)剖析某音樂(lè)節(jié)的舞臺(tái)設(shè)計(jì),討論其如何通過(guò)視覺(jué)效果和燈光音效營(yíng)造音樂(lè)節(jié)氛圍。4、(本題5分)某汽車品牌的年度報(bào)告設(shè)計(jì)精美,數(shù)據(jù)圖表與文字說(shuō)明搭配和諧,圖片選擇具有代表性。請(qǐng)分析此報(bào)告設(shè)計(jì)如何清晰地呈現(xiàn)公司的業(yè)績(jī)和發(fā)展戰(zhàn)略,如何增強(qiáng)報(bào)告的可讀性和專業(yè)性,以及在視覺(jué)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論