太原學院《基礎(chǔ)視覺設(shè)計》2023-2024學年第一學期期末試卷_第1頁
太原學院《基礎(chǔ)視覺設(shè)計》2023-2024學年第一學期期末試卷_第2頁
太原學院《基礎(chǔ)視覺設(shè)計》2023-2024學年第一學期期末試卷_第3頁
太原學院《基礎(chǔ)視覺設(shè)計》2023-2024學年第一學期期末試卷_第4頁
太原學院《基礎(chǔ)視覺設(shè)計》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第2頁,共2頁太原學院《基礎(chǔ)視覺設(shè)計》

2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的目標計數(shù)是估計圖像或視頻中目標的數(shù)量。假設(shè)要在一張人群圖像中準確計數(shù)人數(shù),以下關(guān)于目標計數(shù)方法的描述,正確的是:()A.基于檢測的計數(shù)方法通過檢測每個個體來實現(xiàn)計數(shù),對密集場景效果好B.基于回歸的計數(shù)方法直接預測目標數(shù)量,計算速度快但精度較低C.深度學習中的注意力機制在目標計數(shù)中沒有作用,不能提高計數(shù)準確性D.目標計數(shù)只需要考慮目標的外觀特征,不需要考慮圖像的上下文信息2、當利用計算機視覺進行圖像分類任務(wù),例如區(qū)分不同種類的動物圖片,為了提高模型的泛化能力和防止過擬合,以下哪種技術(shù)可能是有效的?()A.數(shù)據(jù)增強B.正則化C.模型融合D.以上都是3、當利用計算機視覺進行圖像檢索任務(wù),例如在海量圖像庫中查找相似的圖像,以下哪種圖像表示方法可能對檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學習特征D.以上都是4、在計算機視覺的圖像配準任務(wù)中,假設(shè)要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準操作C.基于圖像灰度值的配準方法,計算灰度差異D.隨機選擇圖像中的點進行匹配5、在計算機視覺的圖像分割任務(wù)中,假設(shè)要對細胞圖像進行精細分割。以下關(guān)于模型選擇的考慮因素,哪一項是不準確的?()A.模型對細胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓練時間和計算資源需求D.模型的知名度和在學術(shù)圈的引用次數(shù)6、計算機視覺中的動作識別旨在識別視頻中的人物動作。假設(shè)我們要對一段包含復雜背景和多人交互的視頻進行動作識別,以下哪種特征表示可能對提高識別準確率有幫助?()A.基于光流的特征B.基于圖像直方圖的特征C.基于像素值的原始特征D.基于圖像邊緣的特征7、在計算機視覺中,圖像檢索是根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)的圖像。以下關(guān)于圖像檢索的說法,錯誤的是()A.圖像檢索可以基于圖像的內(nèi)容,如顏色、形狀和紋理等特征B.深度學習方法可以學習到更具語義的圖像表示,提高圖像檢索的準確性C.圖像檢索在電子商務(wù)、數(shù)字圖書館和圖像搜索引擎等領(lǐng)域有廣泛的應用D.圖像檢索的性能只取決于圖像特征的提取,與數(shù)據(jù)庫的組織和索引無關(guān)8、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(MLP)架構(gòu)B.采用生成對抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對抗訓練生成高質(zhì)量圖像C.運用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息9、在計算機視覺的圖像配準任務(wù)中,假設(shè)要將兩張不同視角拍攝的同一物體的圖像進行對齊。以下關(guān)于圖像配準方法的描述,正確的是:()A.基于特征點的配準方法對圖像的旋轉(zhuǎn)、縮放和平移具有不變性,但特征點的提取容易出錯B.基于灰度的配準方法計算簡單,但對光照變化和噪聲敏感C.深度學習中的自監(jiān)督學習方法在圖像配準中無法學習到有效的特征表示D.圖像配準的精度只取決于配準算法的選擇,與圖像的質(zhì)量和特征無關(guān)10、在計算機視覺中,目標檢測是一項重要的任務(wù)。假設(shè)要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關(guān)于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用11、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學習的方法C.基于深度學習的方法,如SRCNND.基于小波變換的方法12、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學習架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)13、在計算機視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風格和主題上存在差異。為了提高檢索的效率和準確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對圖像的標簽進行文本匹配,忽略圖像內(nèi)容C.隨機選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進行任何預處理,直接在原始圖像上進行檢索14、計算機視覺中的圖像修復旨在恢復圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進行修復以還原其完整的內(nèi)容。以下哪種圖像修復方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴散的圖像修復B.基于紋理合成的圖像修復C.基于深度學習的圖像修復D.基于樣例的圖像修復15、視頻分析是計算機視覺的一個重要領(lǐng)域。假設(shè)我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務(wù),以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除16、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,同時保留圖像的細節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴重噪聲污染的醫(yī)學圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時,最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法17、計算機視覺中的動作識別是一個具有挑戰(zhàn)性的任務(wù)。假設(shè)要識別一段體育比賽視頻中的運動員動作,以下關(guān)于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結(jié)合空間和時間維度的特征來描述動作18、在圖像配準任務(wù)中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進行配準,以下哪個因素對于配準的準確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲19、在計算機視覺的視覺跟蹤任務(wù)中,目標在運動過程中可能會發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是20、計算機視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學習的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述圖像的均值漂移算法的用途。2、(本題5分)說明計算機視覺在物流配送優(yōu)化中的作用。3、(本題5分)說明計算機視覺在海洋生態(tài)監(jiān)測中的作用。4、(本題5分)解釋在計算機視覺中卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和工作原理。5、(本題5分)解釋計算機視覺中的強化學習在機器人視覺中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某飲料品牌的果汁飲料包裝設(shè)計,研究其如何運用視覺元素傳達果汁的新鮮和天然特點。2、(本題5分)選取某運動品牌的運動俱樂部會員卡設(shè)計,分析其如何運用視覺元素展示會員卡的權(quán)益和吸引會員加入。3、(本題5分)選取某食品品牌的食品標簽設(shè)計,分析其如何運用文字、圖案等元素傳達食品信息和吸引消費者。4、(本題5分)研究某藝術(shù)展覽的邀請函設(shè)計,分析其如何通過材質(zhì)選擇、印刷工藝和排版設(shè)計來體現(xiàn)藝術(shù)感和獨特性,邀請嘉賓參與。5、(本題5分)某在線教育平臺的課程界面設(shè)計清晰簡潔,學習資源分類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論