2025屆河北省石家莊市精英中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第1頁
2025屆河北省石家莊市精英中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第2頁
2025屆河北省石家莊市精英中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第3頁
2025屆河北省石家莊市精英中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第4頁
2025屆河北省石家莊市精英中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆河北省石家莊市精英中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交2.設(shè)是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.若,,則的值為()A. B. C. D.4.設(shè),滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1205.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.36.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.47.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內(nèi)切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.8.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個9.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.10.函數(shù)的圖象大致是()A. B.C. D.11.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.12.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-1二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.14.已知函數(shù),對于任意都有,則的值為______________.15.設(shè)實數(shù)x,y滿足,則點表示的區(qū)域面積為______.16.在平面直角坐標(biāo)系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對稱軸方程.18.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.19.(12分)已知數(shù)列{an}的各項均為正,Sn為數(shù)列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設(shè)bn,求數(shù)列{bn}的前n項和.20.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.21.(12分)已知函數(shù),為實數(shù),且.(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).22.(10分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個極值點,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.2、A【解析】

根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時,,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關(guān)鍵,屬于中等題.3、A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應(yīng)用,取和是解題的關(guān)鍵.4、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.5、C【解析】

由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時,,滿足題意,②當(dāng)時,,,,,故不恒成立,③當(dāng)時,設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.6、A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題7、D【解析】

可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點,且為中點,,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運(yùn)算能力,屬于中檔題.8、C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認(rèn)識,本題中集合都是曲線上的點集.9、D【解析】

首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.10、B【解析】

根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域為.,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.11、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、B【解析】

由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應(yīng)用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.14、【解析】

由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎(chǔ)題.15、【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標(biāo),利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.16、【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2),,.【解析】

(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意可知:由,求得點坐標(biāo),即可求得橢圓的方程;(Ⅱ)設(shè)直線,代入橢圓方程,由韋達(dá)定理,由,由為銳角,則,由向量數(shù)量積的坐標(biāo)公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設(shè)由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設(shè)方程為設(shè)由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,韋達(dá)定理,考查計算能力,屬于中檔題.19、(1)an=2n+1;(2)2.【解析】

(1)根據(jù)題意求出首項,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項公式;(2)利用錯位相減法進(jìn)行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數(shù)列{an}的各項均為正,∴an+1﹣an=2,∴數(shù)列{an}是首項為1、公差為2的等差數(shù)列,∴數(shù)列{an}的通項公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數(shù)列{bn}的前n項和為Tn,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點睛】此題考查求等差數(shù)列的基本量,根據(jù)遞推關(guān)系判定等差數(shù)列,根據(jù)錯位相減進(jìn)行數(shù)列求和,關(guān)鍵在于熟記方法準(zhǔn)確計算.20、(Ⅰ)證明見解析(Ⅱ)【解析】

(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標(biāo)系,設(shè),計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標(biāo)原點,為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論