版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省寧波諾丁漢大學(xué)附中2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線()的漸近線方程為,則()A. B. C. D.2.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.13.已知實數(shù)滿足,則的最小值為()A. B. C. D.4.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.5.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.126.函數(shù)的圖象大致是()A. B.C. D.7.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件8.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.19.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.10.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.11.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓12.三棱柱中,底面邊長和側(cè)棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.14.已知,復(fù)數(shù)且(為虛數(shù)單位),則__________,_________.15.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.16.拋物線上到其焦點的距離為的點的個數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.18.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.20.(12分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當(dāng)直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.21.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)若對任意的,當(dāng)時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.3、A【解析】
所求的分母特征,利用變形構(gòu)造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當(dāng)且僅當(dāng)時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.4、D【解析】
由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.5、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B6、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當(dāng)時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.7、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.8、B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.9、D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.10、B【解析】
據(jù)題意以菱形對角線交點為坐標(biāo)原點建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運算計算出結(jié)果.【詳解】設(shè)與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.11、B【解析】
根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.12、B【解析】
設(shè),,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉(zhuǎn)化為向量夾角的求解問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進行判斷.14、【解析】∵復(fù)數(shù)且∴∴∴∴,故答案為,15、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.16、【解析】
設(shè)拋物線上任意一點的坐標(biāo)為,根據(jù)拋物線的定義求得,并求出對應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線上任意一點的坐標(biāo)為,拋物線的準(zhǔn)線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數(shù)為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標(biāo),考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),最大值公頃;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,?!驹斀狻浚?)由余弦定理得,,所以,,同理可得又,所以,故在區(qū)間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5?!军c睛】本題主要考查利用余弦定理解三角形以及同角三角函數(shù)平方關(guān)系的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運算能力。18、(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.19、(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當(dāng)時,,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.20、(1);(2)①證明見解析;②【解析】
(1)由題意焦距為2,設(shè)點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標(biāo)準(zhǔn)方程.(2)①由題意,聯(lián)立直線與橢圓的方程,得,推導(dǎo)出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,推導(dǎo)出,,由此推導(dǎo)出(定值).【詳解】(1)由題意焦距為2,可設(shè)點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標(biāo)準(zhǔn)方程為.(2)①由題意,聯(lián)立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,,,,(定值).【點睛】本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎(chǔ)知識,考查運算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人借款合同風(fēng)險評估與預(yù)警4篇
- 二零二五年度存量房買賣居間合同書(附房屋產(chǎn)權(quán)瑕疵聲明)4篇
- 二零二五版木材加工企業(yè)節(jié)能減排合同4篇
- 二零二五年度文化旅游項目承包經(jīng)營權(quán)合同集4篇
- 2025年度出差人員差旅費用結(jié)算及管理合同4篇
- 2025年度大棚農(nóng)業(yè)休閑觀光項目開發(fā)合同3篇
- 2025年度盤扣式腳手架租賃與維護保養(yǎng)合同范本4篇
- 2025年度個人房屋抵押貸款合同終止通知協(xié)議2篇
- 2025年度辦公樓消防系統(tǒng)升級合同11293篇
- 2025年度智能門禁系統(tǒng)門面租賃合同匯編4篇
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 護理指南手術(shù)器械臺擺放
- 腫瘤患者管理
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預(yù)測報告
- 2025春夏運動戶外行業(yè)趨勢白皮書
- 《法制宣傳之盜竊罪》課件
- 通信工程單位勞動合同
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓(xùn)課件
- 零部件測繪與 CAD成圖技術(shù)(中職組)沖壓機任務(wù)書
- 2024年計算機二級WPS考試題庫380題(含答案)
- 高低壓配電柜產(chǎn)品營銷計劃書
評論
0/150
提交評論