信陽市重點中學2025屆高三六校第一次聯考數學試卷含解析_第1頁
信陽市重點中學2025屆高三六校第一次聯考數學試卷含解析_第2頁
信陽市重點中學2025屆高三六校第一次聯考數學試卷含解析_第3頁
信陽市重點中學2025屆高三六校第一次聯考數學試卷含解析_第4頁
信陽市重點中學2025屆高三六校第一次聯考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

信陽市重點中學2025屆高三六校第一次聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,則()A. B.C. D.2.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.03.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個4.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.5.《普通高中數學課程標準(2017版)》提出了數學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數學核心素養(yǎng)水平,現以六大素養(yǎng)為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數據分析素養(yǎng)高于乙B.甲的數學建模素養(yǎng)優(yōu)于數學抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲6.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.7.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.10.若函數滿足,且,則的最小值是()A. B. C. D.11.函數的圖象的大致形狀是()A. B. C. D.12.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,,若,且,則面積的最大值為________.14.已知數列的前項和且,設,則的值等于_______________.15.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.16.已知平面向量與的夾角為,,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.18.(12分)已知函數,,使得對任意兩個不等的正實數,都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.19.(12分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.20.(12分)已知拋物線Γ:y2=2px(p>0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經過點A(3,﹣2)的直線交拋物線Γ于M,N兩點,經過定點B(3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.2、C【解析】

根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.3、B【解析】

圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.4、D【解析】

首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現,的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設為梯形的外接圓圓心,當也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.5、D【解析】

根據雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數據分析分,乙的數據分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數據處理,屬于基礎題.6、D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.7、B【解析】

根據誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.8、D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.9、C【解析】

先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.10、A【解析】

由推導出,且,將所求代數式變形為,利用基本不等式求得的取值范圍,再利用函數的單調性可得出其最小值.【詳解】函數滿足,,即,,,,即,,則,由基本不等式得,當且僅當時,等號成立.,由于函數在區(qū)間上為增函數,所以,當時,取得最小值.故選:A.【點睛】本題考查代數式最值的計算,涉及對數運算性質、基本不等式以及函數單調性的應用,考查計算能力,屬于中等題.11、B【解析】

根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.12、A【解析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用正弦定理將角化邊得到,再由余弦定理得到,根據同角三角函數的基本關系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當且僅當時等號成立,∴,∴面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應用,以及基本不等式的應用,屬于中檔題.14、7【解析】

根據題意,當時,,可得,進而得數列為等比數列,再計算可得,進而可得結論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數列是以為首項,為公比的等比數列,故,又,,所以,.故答案為:.【點睛】本題考查了數列遞推關系、函數求值,考查了推理能力與計算能力,計算得是解決本題的關鍵,屬于中檔題.15、【解析】

建系,將直線用方程表示出來,再用參數表示出線段的長度,最后利用導數來求函數最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標系,則.設直線,即,則,所以,所以,,則,則,當時,,則單調遞減,當時,,則單調遞增,所以當時,最短,此時.故答案為:【點睛】本題考查導數的實際應用,屬于中檔題.16、【解析】

根據已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數量積運算,考查計算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(Ⅰ)取的中點,連結、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設,則由題意知,,,,,,設平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成,著重考查了分析問題和解答問題的能力.18、(1);(2)證明見解析.【解析】

(1)根據題意,在上單調遞減,求導得,分類討論的單調性,結合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構造函數,根據導數研究單調性,求出,即可證出結論.【詳解】(1)根據題意,對任意兩個不等的正實數,都有恒成立.則在上單調遞減,因為,當時,在內單調遞減.,當時,由,有,此時,當時,單調遞減,當時,單調遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構造函數.則,所以函數在上單調遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導數研究函數的單調性求函數的解析式、以及利用構造函數法證明不等式,考查轉化思想、解題分析能力和計算能力.19、(1);(2)見解析.【解析】

(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結論.【詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.20、(1)y2=4x;;(2)直線NL恒過定點(﹣3,0),理由見解析.【解析】

(1)根據拋物線的方程,求得焦點F(,0),利用(2,2),表示點P的坐標,再代入拋物線方程求解.(2)設M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因為A(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點F(,0),滿足(2,2)的P的坐標為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過定點(﹣3,0).【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論