版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河北省景縣梁集中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.2.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交3.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.4.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.5.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.46.已知向量,,且,則()A. B. C.1 D.27.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.48.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.9.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.10.若數(shù)列滿足且,則使的的值為()A. B. C. D.11.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),則()A. B. C. D.12.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q二、填空題:本題共4小題,每小題5分,共20分。13.在一次醫(yī)療救助活動(dòng)中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)14.若,則=______,=______.15.正方體的棱長(zhǎng)為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點(diǎn)之間的線段稱為球的弦),為正方體表面上的動(dòng)點(diǎn),當(dāng)弦的長(zhǎng)度最大時(shí),的取值范圍是______.16.設(shè)函數(shù),若存在實(shí)數(shù)m,使得關(guān)于x的方程有4個(gè)不相等的實(shí)根,且這4個(gè)根的平方和存在最小值,則實(shí)數(shù)a的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.18.(12分)已知,求的最小值.19.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.20.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.21.(12分)如圖,在四棱柱中,平面平面,是邊長(zhǎng)為2的等邊三角形,,,,點(diǎn)為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長(zhǎng),若不存在說明理由.22.(10分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問題和解決問題的能力,屬于中等題.2、D【解析】
通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.3、B【解析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.4、A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號(hào),結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對(duì)稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號(hào),考查分析問題和解決問題的能力,屬于中等題.5、C【解析】
方法一:設(shè),利用拋物線的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過定點(diǎn),過分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.6、A【解析】
根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點(diǎn)睛】本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.7、C【解析】
根據(jù)對(duì)稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對(duì)稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.8、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).9、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.10、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.11、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算求解能力,屬于基礎(chǔ)題.12、C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.【點(diǎn)睛】解排列組合問題要遵循兩個(gè)原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).14、10【解析】
①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.15、【解析】
由弦的長(zhǎng)度最大可知為球的直徑.由向量的線性運(yùn)用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長(zhǎng)度最大時(shí),為球的直徑,由向量線性運(yùn)算可知正方體的棱長(zhǎng)為2,則球的半徑為1,,所以,而所以,即故答案為:.【點(diǎn)睛】本題考查了空間向量線性運(yùn)算與數(shù)量積的運(yùn)算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.16、【解析】
先確定關(guān)于x的方程當(dāng)a為何值時(shí)有4個(gè)不相等的實(shí)根,再將這四個(gè)根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時(shí)這4個(gè)根的平方和存在最小值即可.【詳解】由題意,當(dāng)時(shí),,此時(shí),此時(shí)函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個(gè)不相等的實(shí)根,舍;當(dāng)時(shí),函數(shù)圖象如下所示:從左到右方程,有4個(gè)不相等的實(shí)根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時(shí)有最小值,則對(duì)稱軸,解得.綜上所述,實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)和方程的知識(shí),但需要一定的邏輯思維能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達(dá)定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標(biāo)方程可化為.把,代入曲線的極坐標(biāo)方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點(diǎn),∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點(diǎn)睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角,是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示之間的距離.(2)直角坐標(biāo)方程轉(zhuǎn)為極坐標(biāo)方程的關(guān)鍵是利用公式,而極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程的關(guān)鍵是利用公式,后者也可以把極坐標(biāo)方程變形盡量產(chǎn)生以便轉(zhuǎn)化.18、【解析】
討論和的情況,然后再分對(duì)稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對(duì)稱軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。19、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進(jìn)而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點(diǎn)在直線上,直線過圓的圓心.因此,是圓的直徑,.【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時(shí)也考查了直線截圓所得弦長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】
(1)取中點(diǎn)為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),,,為,,軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,,,如下圖所示:因?yàn)?,,,所以,故為等邊三角形,則.連接,因?yàn)?,,所以為等邊三角形,則.又,所以平面.因?yàn)槠矫?,所?(2)由(1)知,因?yàn)槠矫嫫矫?,平面,所以平面,以為原點(diǎn),,,為,,軸建立如圖所示的空間直角坐標(biāo)系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.21、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點(diǎn),連結(jié)、,推導(dǎo)出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點(diǎn),連結(jié),,推導(dǎo)出平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值;(Ⅲ)假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點(diǎn),連結(jié)、,是邊長(zhǎng)為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年滬科版八年級(jí)生物上冊(cè)月考試卷
- 醫(yī)療級(jí)心理輔導(dǎo)學(xué)校與家庭的共同責(zé)任和挑戰(zhàn)
- 2024-2025學(xué)年江蘇省常州市新北區(qū)百草園小學(xué)三上數(shù)學(xué)期末綜合測(cè)試試題含解析
- 商業(yè)媒體行業(yè)設(shè)備及軟件采購策略探討
- 企業(yè)實(shí)驗(yàn)室設(shè)備管理的關(guān)鍵環(huán)節(jié)-維護(hù)與保養(yǎng)
- 互聯(lián)網(wǎng)金融時(shí)代的對(duì)公客戶安全保障
- 醫(yī)療垃圾的特殊處理與小區(qū)垃圾分類
- 從被動(dòng)接受到主動(dòng)參與殘疾人家庭康復(fù)的心理轉(zhuǎn)變
- 可持續(xù)材料在家具生命周期中的角色與影響
- 2025中國(guó)鐵塔青海分公司校園招聘16人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 甲醇制氫生產(chǎn)裝置計(jì)算書
- 設(shè)計(jì)中的重點(diǎn)、難點(diǎn)及關(guān)鍵技術(shù)問題的把握控制及相應(yīng)措施
- 2023-2024學(xué)年福建省泉州市石獅市三年級(jí)(上)期末數(shù)學(xué)試卷
- 新時(shí)代高校馬克思主義學(xué)院內(nèi)涵式發(fā)展的現(xiàn)狀和現(xiàn)實(shí)進(jìn)路
- 2024以租代購合同
- 湖南省益陽市2023-2024學(xué)年高二上學(xué)期1月期末物理試題 含答案
- 擦玻璃安全責(zé)任合同協(xié)議書范本
- 2019水電工程探地雷達(dá)探測(cè)技術(shù)規(guī)程
- 第六單元(整體教學(xué)課件)七年級(jí)語文上冊(cè)大單元教學(xué)名師備課系列(統(tǒng)編版2024)
- 垃圾填埋廠租地合同范本
- 漢語詞匯與文化智慧樹知到期末考試答案章節(jié)答案2024年浙江師范大學(xué)
評(píng)論
0/150
提交評(píng)論