![2025屆四川省德陽(yáng)市什邡中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view6/M03/20/27/wKhkGWd0Lo6ASzOcAAJIzTuAyl4370.jpg)
![2025屆四川省德陽(yáng)市什邡中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view6/M03/20/27/wKhkGWd0Lo6ASzOcAAJIzTuAyl43702.jpg)
![2025屆四川省德陽(yáng)市什邡中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view6/M03/20/27/wKhkGWd0Lo6ASzOcAAJIzTuAyl43703.jpg)
![2025屆四川省德陽(yáng)市什邡中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view6/M03/20/27/wKhkGWd0Lo6ASzOcAAJIzTuAyl43704.jpg)
![2025屆四川省德陽(yáng)市什邡中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view6/M03/20/27/wKhkGWd0Lo6ASzOcAAJIzTuAyl43705.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川省德陽(yáng)市什邡中學(xué)高三第二次聯(lián)考數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件2.過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.3.下列函數(shù)中,圖象關(guān)于軸對(duì)稱的為()A. B.,C. D.4.的展開式中的系數(shù)為()A. B. C. D.5.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”6.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.117.已知拋物線的焦點(diǎn)為,過焦點(diǎn)的直線與拋物線分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線交于點(diǎn),且,則()A. B.2 C. D.38.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.79.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.11.已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.812.已知i是虛數(shù)單位,則1+iiA.-12+32i二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數(shù),且,的最小值為________.14.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為________.15.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.16.已知,則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長(zhǎng).18.(12分)某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對(duì)父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:同意不同意合計(jì)男生a5女生40d合計(jì)100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請(qǐng)說(shuō)明理由;(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4位學(xué)生進(jìn)行長(zhǎng)期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63519.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.20.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求的值;(2)若,求的面積.21.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.22.(10分)如圖,在直角中,,通過以直線為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時(shí),求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說(shuō)明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡(jiǎn)單題.2、B【解析】
利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.3、D【解析】
圖象關(guān)于軸對(duì)稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對(duì)選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對(duì)稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對(duì)稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對(duì)于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對(duì)稱.4、C【解析】由題意,根據(jù)二項(xiàng)式定理展開式的通項(xiàng)公式,得展開式的通項(xiàng)為,則展開式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問題可得解.5、B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.6、B【解析】
根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.7、B【解析】
過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由拋物線解析式知:,準(zhǔn)線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點(diǎn)睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.8、B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.9、A【解析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題10、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因?yàn)?,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)椋?,又,,則|,即,所以.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡(jiǎn)能力和轉(zhuǎn)化思想.11、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)?,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.12、D【解析】
利用復(fù)數(shù)的運(yùn)算法則即可化簡(jiǎn)得出結(jié)果【詳解】1+i故選D【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
本題首先可以根據(jù)將化簡(jiǎn)為,然后根據(jù)基本不等式即可求出最小值.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng),即、時(shí)取等號(hào),故答案為:.【點(diǎn)睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時(shí)候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.14、【解析】
基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)?,所以是異面直線與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.16、【解析】
先求,再根據(jù)的范圍求出即可.【詳解】由題可知,故.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)函數(shù)值的求解,涉及對(duì)數(shù)的運(yùn)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡(jiǎn)整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長(zhǎng).【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長(zhǎng)a+b+c=3+3.【點(diǎn)睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.18、(1),有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān);(2)詳見解析.【解析】
(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計(jì)算結(jié)果即可確定有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)(2)由題意可知X服從二項(xiàng)分布,利用公式計(jì)算概率及期望即可.【詳解】(1)因?yàn)?00人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)(2)①由題知持“同意”態(tài)度的學(xué)生的頻率為,即從學(xué)生中任意抽取到一名持“同意”態(tài)度的學(xué)生的概率為.由于總體容量很大,故X服從二項(xiàng)分布,即從而X的分布列為X01234X的數(shù)學(xué)期望為【點(diǎn)睛】本題主要考查了相關(guān)性檢驗(yàn)、二項(xiàng)分布,屬于中檔題.19、(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)?,,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.20、(1);(2).【解析】
(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點(diǎn)睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.21、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河源道路運(yùn)輸從業(yè)資格考試系統(tǒng)
- 2024-2025學(xué)年新教材高中語(yǔ)文第六單元課時(shí)優(yōu)案5拿來(lái)主義習(xí)題含解析新人教版必修上冊(cè)
- 光學(xué)實(shí)驗(yàn)室建設(shè)方案
- 華師大版數(shù)學(xué)八年級(jí)下冊(cè)《平面直角坐標(biāo)系》聽評(píng)課記錄
- 高中老師工作總結(jié)
- 個(gè)人培訓(xùn)研修計(jì)劃
- 實(shí)驗(yàn)教學(xué)聽評(píng)課記錄
- 餐飲合伙人合同范本
- 應(yīng)急照明施工合同范本
- 華中農(nóng)業(yè)大學(xué)《礦井熱害防治》2023-2024學(xué)年第二學(xué)期期末試卷
- 建設(shè)工程施工合同糾紛處理課件
- 標(biāo)準(zhǔn)太陽(yáng)能光譜數(shù)據(jù)
- 小學(xué)校長(zhǎng)新學(xué)期工作思路3篇
- 四年級(jí)下冊(cè)數(shù)學(xué)應(yīng)用題專項(xiàng)練習(xí)
- 煤礦安全生產(chǎn)事故風(fēng)險(xiǎn)辨識(shí)評(píng)估和應(yīng)急資源調(diào)查報(bào)告
- 建筑結(jié)構(gòu)課程設(shè)計(jì)說(shuō)明書實(shí)例完整版(本)
- 橋梁橋臺(tái)施工技術(shù)交底(三級(jí))
- LNG液化天然氣泄漏事故的危害與處置ppt課件
- 醋酸鈉化學(xué)品安全技術(shù)說(shuō)明書MSDS
- 頂進(jìn)法施工用鋼筋溷凝土管結(jié)構(gòu)配筋手冊(cè)
- (完整版)新人教版八年級(jí)下冊(cè)英語(yǔ)單詞表
評(píng)論
0/150
提交評(píng)論