河北省宣化一中張北一中2025屆高考數(shù)學全真模擬密押卷含解析_第1頁
河北省宣化一中張北一中2025屆高考數(shù)學全真模擬密押卷含解析_第2頁
河北省宣化一中張北一中2025屆高考數(shù)學全真模擬密押卷含解析_第3頁
河北省宣化一中張北一中2025屆高考數(shù)學全真模擬密押卷含解析_第4頁
河北省宣化一中張北一中2025屆高考數(shù)學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

河北省宣化一中張北一中2025屆高考數(shù)學全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.2.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.3.若復數(shù)滿足,則()A. B. C. D.4.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.35.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.86.設函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.7.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.8.關于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.9.當輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.10.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.11.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④12.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.14.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側(cè),現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.15.已知向量滿足,且,則_________.16.已知函數(shù)的圖象在處的切線斜率為,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82818.(12分)唐詩是中國文學的瑰寶.為了研究計算機上唐詩分類工作中檢索關鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統(tǒng)計了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭山水田園交游送別羈旅思鄉(xiāng)其他總計篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;(2)已知檢索關鍵字的選取規(guī)則為:①若有超過95%的把握判斷“某字”與“某類別”有關系,則“某字”為“某類別”的關鍵字;②若“某字”被選為“某類別”關鍵字,則由其對應列聯(lián)表得到的的觀測值越大,排名就越靠前;設“山”“簾”“花”和“愛情婚姻”對應的觀測值分別為,,.已知,,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計含“花”字的篇數(shù)不含“花”的篇數(shù)總計附:,其中.0.050.0250.0103.8415.0246.63519.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.20.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.21.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標原點,求△面積的最大值及此時直線的方程.22.(10分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據(jù)列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質(zhì),考查運算求解能力,屬于中檔題.2、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.3、C【解析】

把已知等式變形,利用復數(shù)代數(shù)形式的除法運算化簡,再由復數(shù)模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,是基礎題.4、C【解析】

否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.5、C【解析】

先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.6、C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應用,屬于中檔題.7、C【解析】

,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.8、B【解析】

利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應用.9、A【解析】

根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關鍵,屬于基礎題.10、D【解析】

根據(jù)拋物線的性質(zhì),設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計算能力,屬于中檔題.11、A【解析】

對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.12、A【解析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解析】

(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.14、【解析】

分兩種情況討論:(1)斜邊在BC上,設,則,(2)若在若一條直角邊在上,設,則,進一步利用導數(shù)的應用和三角函數(shù)關系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設,則,則,,從而.當時,此時,符合.(2)若一條直角邊在上,設,則,則,,由知.,當時,,單調(diào)遞增,當時,,單調(diào)遞減,.當,即時,最大.故答案為:.【點睛】此題考查實際問題中導數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應用,注意分類討論把所有情況考慮完全,屬于一般性題目.15、【解析】

由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.16、【解析】

先對函數(shù)f(x)求導,再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據(jù)曲線上在某點切線方程的斜率求參數(shù)的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】

(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設實際付款元,,則的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認為“手機支付族”與“性別”有關;(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設實際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點睛】本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18、(1)該唐詩屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最?。粚儆凇吧剿飯@”類別的概率約為;屬于“其他”類別的概率約為(2)填表見解析;選擇“花”,“簾”作為“愛情婚姻”類別的關鍵字,且排序為“花”,“簾”【解析】

(1)根據(jù)統(tǒng)計圖表算出頻率,比較大小即可判斷;(2)根據(jù)統(tǒng)計圖表完成列聯(lián)表,算出觀測值,查表判斷.【詳解】(1)由上表可知,該唐詩屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最小屬于“山水田園”類別的概率約為;屬于“其他”類別的概率約為;(2)列聯(lián)表如下:屬于“愛情婚姻”類不屬于“愛情婚姻”類共計含“花”的篇數(shù)60100160不含“花”的篇數(shù)40300340共計100400500計算得:;因為,,所以有超過95%的把握判斷“花”字和“簾”字均與“愛情婚姻”有關系,故“花”和“簾”是“愛情婚姻”的關鍵字,而“山”不是;又因為,故選擇“花”,“簾”作為“愛情婚姻”類別的關鍵字,且排序為“花”,“簾”.【點睛】本題主要考查統(tǒng)計圖表、頻率與概率的關系、用樣本估計總體、獨立性檢驗等知識點.考查了學生對統(tǒng)計圖表的識讀與計算能力,考查了學生的數(shù)據(jù)分析、數(shù)學運算等核心素養(yǎng).19、(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調(diào)查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調(diào)查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調(diào)查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.20、(1)線的普通方程為,曲線的直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論