武漢華夏理工學(xué)院《機(jī)器視覺技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
武漢華夏理工學(xué)院《機(jī)器視覺技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
武漢華夏理工學(xué)院《機(jī)器視覺技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
武漢華夏理工學(xué)院《機(jī)器視覺技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
武漢華夏理工學(xué)院《機(jī)器視覺技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)武漢華夏理工學(xué)院

《機(jī)器視覺技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見解。假設(shè)要分析一場(chǎng)足球比賽中球員的跑動(dòng)軌跡和動(dòng)作。以下關(guān)于計(jì)算機(jī)視覺在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過對(duì)視頻的分析,自動(dòng)跟蹤球員的位置和運(yùn)動(dòng)軌跡B.能夠?qū)η騿T的動(dòng)作進(jìn)行分類,如傳球、射門和防守C.計(jì)算機(jī)視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)2、計(jì)算機(jī)視覺在智能零售中的應(yīng)用可以改善購(gòu)物體驗(yàn)和提高運(yùn)營(yíng)效率。假設(shè)一個(gè)超市需要通過計(jì)算機(jī)視覺實(shí)現(xiàn)自動(dòng)結(jié)賬和庫(kù)存管理。以下關(guān)于計(jì)算機(jī)視覺在智能零售中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過商品識(shí)別技術(shù)自動(dòng)識(shí)別顧客購(gòu)買的商品,實(shí)現(xiàn)快速結(jié)賬B.能夠?qū)崟r(shí)監(jiān)測(cè)貨架上商品的庫(kù)存水平,及時(shí)提醒補(bǔ)貨C.計(jì)算機(jī)視覺系統(tǒng)能夠準(zhǔn)確識(shí)別所有商品的包裝和標(biāo)簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營(yíng)銷策略提供數(shù)據(jù)支持3、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來描述動(dòng)作4、在計(jì)算機(jī)視覺中,以下哪種方法常用于圖像的顯著目標(biāo)檢測(cè)中的高層語義信息利用?()A.深度學(xué)習(xí)B.圖模型C.注意力機(jī)制D.以上都是5、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時(shí)間不同的同一物體的圖像進(jìn)行精確對(duì)齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點(diǎn)匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進(jìn)行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計(jì)算灰度差異D.隨機(jī)選擇圖像中的點(diǎn)進(jìn)行匹配6、圖像分類是計(jì)算機(jī)視覺的常見應(yīng)用之一。考慮一個(gè)需要對(duì)大量自然風(fēng)景圖片進(jìn)行分類的任務(wù),這些圖片包含了不同的季節(jié)、地理位置和天氣條件。為了提高分類準(zhǔn)確率,以下哪種預(yù)處理操作可能最為有效?()A.對(duì)圖像進(jìn)行裁剪和縮放,使其具有統(tǒng)一的尺寸B.對(duì)圖像進(jìn)行直方圖均衡化,增強(qiáng)對(duì)比度C.將圖像轉(zhuǎn)換為灰度圖像,減少顏色信息的干擾D.對(duì)圖像進(jìn)行隨機(jī)旋轉(zhuǎn)和翻轉(zhuǎn),增加數(shù)據(jù)多樣性7、在計(jì)算機(jī)視覺的圖像超分辨率任務(wù)中,假設(shè)要將一張低分辨率圖像恢復(fù)為高分辨率圖像。以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡(jiǎn)單快速,但恢復(fù)出的圖像細(xì)節(jié)不夠清晰B.基于深度學(xué)習(xí)的方法能夠生成逼真的高分辨率圖像,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源C.圖像超分辨率技術(shù)可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復(fù)出原始高分辨率圖像的所有信息8、當(dāng)進(jìn)行圖像的風(fēng)格遷移任務(wù)時(shí),假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫的風(fēng)格,同時(shí)保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實(shí)現(xiàn)這一目標(biāo)時(shí)可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對(duì)圖像進(jìn)行簡(jiǎn)單的色彩變換和濾鏡處理C.隨機(jī)改變圖像的像素值來模擬風(fēng)格遷移D.只對(duì)圖像的邊緣進(jìn)行處理,忽略內(nèi)部區(qū)域9、計(jì)算機(jī)視覺中的表情識(shí)別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情特征的提取,哪一項(xiàng)是需要重點(diǎn)關(guān)注的?()A.提取面部肌肉的細(xì)微運(yùn)動(dòng)作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進(jìn)行任何特征提取,直接使用原始圖像進(jìn)行分類10、假設(shè)要開發(fā)一個(gè)能夠?qū)ξ奈镞M(jìn)行數(shù)字化保護(hù)和修復(fù)的計(jì)算機(jī)視覺系統(tǒng),需要對(duì)文物的破損部分進(jìn)行準(zhǔn)確識(shí)別和重建。以下哪種技術(shù)在文物修復(fù)方面可能具有應(yīng)用潛力?()A.圖像修復(fù)算法B.三維重建技術(shù)C.虛擬增強(qiáng)現(xiàn)實(shí)技術(shù)D.以上都是11、計(jì)算機(jī)視覺在智能交通系統(tǒng)中的應(yīng)用可以優(yōu)化交通流量和提高安全性。假設(shè)要通過計(jì)算機(jī)視覺監(jiān)測(cè)道路上的車輛擁堵情況。以下關(guān)于計(jì)算機(jī)視覺在智能交通中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過車輛檢測(cè)和計(jì)數(shù)來評(píng)估道路的擁堵程度B.能夠識(shí)別車輛的類型和行駛方向,為交通管理提供數(shù)據(jù)支持C.計(jì)算機(jī)視覺在智能交通中的應(yīng)用完全不受惡劣天氣和光照條件的影響D.可以與交通信號(hào)控制系統(tǒng)聯(lián)動(dòng),實(shí)現(xiàn)自適應(yīng)的交通信號(hào)配時(shí)12、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測(cè)生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對(duì)零件進(jìn)行實(shí)時(shí)檢測(cè),快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測(cè)C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺在工業(yè)檢測(cè)中只能檢測(cè)外觀缺陷,對(duì)于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評(píng)估13、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測(cè)生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺方法在檢測(cè)復(fù)雜的表面缺陷時(shí)比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測(cè)出各種缺陷C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺系統(tǒng)不需要考慮實(shí)時(shí)性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對(duì)表面缺陷檢測(cè)的結(jié)果沒有影響14、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動(dòng)分割是最準(zhǔn)確的方法,不需要借助計(jì)算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)15、在計(jì)算機(jī)視覺的圖像增強(qiáng)處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強(qiáng)圖像的對(duì)比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強(qiáng)算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強(qiáng)方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)計(jì)算機(jī)視覺中如何利用深度學(xué)習(xí)進(jìn)行圖像分類?2、(本題5分)解釋計(jì)算機(jī)視覺在法律服務(wù)中的作用。3、(本題5分)解釋計(jì)算機(jī)視覺中的人體姿態(tài)估計(jì)的應(yīng)用場(chǎng)景。4、(本題5分)說明計(jì)算機(jī)視覺在火山活動(dòng)監(jiān)測(cè)中的應(yīng)用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于計(jì)算機(jī)視覺的智能售貨機(jī)系統(tǒng),通過商品圖像識(shí)別實(shí)現(xiàn)自動(dòng)售貨。2、(本題5分)運(yùn)用圖像分類技術(shù),對(duì)不同種類的內(nèi)畫進(jìn)行分類。3、(本題5分)基于計(jì)算機(jī)視覺的智能垃圾分類機(jī)器人,實(shí)現(xiàn)垃圾的自動(dòng)分類和投放。4、(本題5分)開發(fā)一個(gè)能夠識(shí)別不同種類偶蹄動(dòng)物的計(jì)算機(jī)視覺系統(tǒng)。5、(本題5分)基于計(jì)算機(jī)視覺的智能農(nóng)業(yè)灌溉系統(tǒng),根據(jù)作物生長(zhǎng)情況精準(zhǔn)控制灌溉量。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)觀察某城市的公共交通導(dǎo)向標(biāo)識(shí)系統(tǒng)設(shè)計(jì),探討其在圖形符號(hào)、色彩搭配和文字信

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論