版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
C語(yǔ)言中的概率及其運(yùn)算C語(yǔ)言是一種廣泛使用的編程語(yǔ)言,在處理數(shù)據(jù)概率和概率運(yùn)算方面有著廣泛的應(yīng)用。本課程將探討C語(yǔ)言中的概率概念及其基本運(yùn)算方法,幫助您全面掌握概率相關(guān)的編程技能。什么是概率?概率的定義概率是定量描述事件發(fā)生可能性的數(shù)學(xué)工具。它反映了事件在一系列重復(fù)試驗(yàn)中出現(xiàn)的頻率。概率的應(yīng)用概率理論在科學(xué)、工程、金融等領(lǐng)域廣泛應(yīng)用,可以幫助我們預(yù)測(cè)和分析各種隨機(jī)事件的發(fā)生規(guī)律。概率的分類(lèi)概率可分為頻率概率和貝葉斯概率。前者基于相對(duì)頻率,后者基于主觀(guān)信念。兩者在實(shí)際應(yīng)用中相互補(bǔ)充。概率的重要性準(zhǔn)確掌握概率理論是科學(xué)研究、工程設(shè)計(jì)、數(shù)據(jù)分析等工作的基礎(chǔ),對(duì)于提高工作效率和決策質(zhì)量非常關(guān)鍵。概率的計(jì)算方法事件頻率法通過(guò)觀(guān)察事件發(fā)生的頻率來(lái)估計(jì)概率,適用于大樣本、穩(wěn)定事件。古典概型法對(duì)于可以列舉所有可能結(jié)果的情況,可以直接計(jì)算概率。幾何概型法對(duì)于幾何模型中的事件,可以根據(jù)幾何圖形計(jì)算概率。條件概率條件概率的定義條件概率是指在某個(gè)事件發(fā)生的前提下另一個(gè)事件發(fā)生的概率。它表示在已知某個(gè)事件A發(fā)生的情況下,事件B發(fā)生的概率。條件概率的計(jì)算條件概率可以用概率樹(shù)圖或貝葉斯定理等方法進(jìn)行計(jì)算。這種概率運(yùn)算可應(yīng)用于各種實(shí)際決策問(wèn)題的分析中。貝葉斯定理貝葉斯定理是一種重要的條件概率計(jì)算方法,它建立了事件發(fā)生的先驗(yàn)概率和后驗(yàn)概率之間的關(guān)系。獨(dú)立事件獨(dú)立事件的定義兩個(gè)事件A和B互不影響,彼此之間沒(méi)有任何關(guān)系。發(fā)生一個(gè)事件不會(huì)影響另一個(gè)事件的發(fā)生概率。獨(dú)立概率的計(jì)算獨(dú)立事件的概率等于各事件概率的乘積。P(A和B)=P(A)xP(B)。獨(dú)立事件的應(yīng)用獨(dú)立事件在隨機(jī)實(shí)驗(yàn)、貝葉斯定理等概率應(yīng)用中非常常見(jiàn),是概率理論的基礎(chǔ)之一。概率的加法公式加法規(guī)則當(dāng)事件A和B互斥時(shí),P(A或B)=P(A)+P(B)。如果事件不互斥,則需要減去重疊部分P(A∩B)。加法公式P(A或B)=P(A)+P(B)-P(A∩B)。即兩個(gè)事件的概率之和減去它們的交集概率。應(yīng)用場(chǎng)景加法公式廣泛應(yīng)用于各種概率問(wèn)題中,可以幫助我們計(jì)算復(fù)雜事件的概率。排列組合1排列排列指在一個(gè)集合中按照特定順序選取若干個(gè)元素,排列的順序是重要的。排列公式為A(n,m)=n!/(n-m)!。2組合組合指在一個(gè)集合中選取若干個(gè)元素,順序無(wú)關(guān)。組合公式為C(n,m)=n!/((n-m)!*m!)。3應(yīng)用舉例排列組合在概率統(tǒng)計(jì)、計(jì)算機(jī)科學(xué)等領(lǐng)域有廣泛應(yīng)用。比如抽獎(jiǎng)中中獎(jiǎng)幾率的計(jì)算、DNA序列分析等。概率密度函數(shù)1定義概率密度函數(shù)是描述連續(xù)型隨機(jī)變量分布規(guī)律的函數(shù)。它表示在某個(gè)區(qū)間內(nèi)取值的概率密度。2積分性質(zhì)概率密度函數(shù)積分為1,表示隨機(jī)變量在整個(gè)取值范圍內(nèi)的總概率為1。3計(jì)算概率在概率密度函數(shù)上取一定區(qū)間的積分可以得到該區(qū)間內(nèi)的概率值。4典型概率密度函數(shù)常見(jiàn)的概率密度函數(shù)包括正態(tài)分布、指數(shù)分布、均勻分布等。它們描述了不同類(lèi)型的隨機(jī)變量分布。期望值和方差1期望值期望值是隨機(jī)變量的加權(quán)平均值,描述了隨機(jī)變量的中心趨勢(shì)。它表示了這個(gè)隨機(jī)變量的平均表現(xiàn)或者期望結(jié)果。2方差方差是描述隨機(jī)變量偏離期望值的程度,越大表示離散程度越高。它反映了隨機(jī)變量的離散性或不確定性。3標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差是方差的算術(shù)平方根,它以同樣的單位描述了隨機(jī)變量的波動(dòng)情況,更直觀(guān)易懂。4應(yīng)用場(chǎng)景期望值和方差在概率統(tǒng)計(jì)、信號(hào)處理、決策分析等諸多領(lǐng)域中都有廣泛應(yīng)用,是重要的統(tǒng)計(jì)特征量。連續(xù)型隨機(jī)變量時(shí)間連續(xù)性連續(xù)型隨機(jī)變量在特定時(shí)間范圍內(nèi)可以取任何值,與離散型隨機(jī)變量只能取某些特定值不同。概率密度函數(shù)連續(xù)型隨機(jī)變量通過(guò)概率密度函數(shù)來(lái)描述其概率分布情況。概率計(jì)算連續(xù)型隨機(jī)變量的概率是通過(guò)對(duì)概率密度函數(shù)在特定區(qū)間進(jìn)行積分計(jì)算得出。正態(tài)分布正態(tài)分布是概率論和統(tǒng)計(jì)學(xué)中最重要的概率分布之一。它被廣泛應(yīng)用于自然科學(xué)、社會(huì)科學(xué)和工程技術(shù)等各個(gè)領(lǐng)域。正態(tài)分布具有獨(dú)特的鐘形曲線(xiàn)特征,并滿(mǎn)足許多重要的性質(zhì),是理解和分析隨機(jī)現(xiàn)象的基礎(chǔ)。二項(xiàng)分布二項(xiàng)分布是一種離散概率分布,描述了一個(gè)二元隨機(jī)試驗(yàn)中成功次數(shù)的概率分布。它描述了在多次獨(dú)立地進(jìn)行相同的二元試驗(yàn)時(shí),出現(xiàn)某種結(jié)果的次數(shù)分布。二項(xiàng)分布依賴(lài)于三個(gè)參數(shù):試驗(yàn)次數(shù)n、成功概率p和失敗概率q。二項(xiàng)分布的應(yīng)用廣泛,例如統(tǒng)計(jì)學(xué)、經(jīng)濟(jì)學(xué)、工程等領(lǐng)域中都有應(yīng)用。了解二項(xiàng)分布對(duì)于分析隨機(jī)過(guò)程和預(yù)測(cè)未來(lái)結(jié)果很有幫助。泊松分布泊松概率分布泊松分布是一種離散型概率分布,用于描述在固定時(shí)間內(nèi)或空間內(nèi)隨機(jī)事件發(fā)生的次數(shù)。它常用于描述稀有事件的發(fā)生概率。泊松分布公式泊松分布的公式為P(X=x)=(e^(-λ)*λ^x)/x!,其中λ為平均發(fā)生率或強(qiáng)度參數(shù)。泊松分布特點(diǎn)適用于稀有事件的概率計(jì)算平均發(fā)生率λ為正數(shù)事件發(fā)生次數(shù)服從泊松分布獨(dú)立事件且發(fā)生概率很小正態(tài)分布的標(biāo)準(zhǔn)化1標(biāo)準(zhǔn)化通過(guò)減去均值并除以標(biāo)準(zhǔn)差來(lái)標(biāo)準(zhǔn)化正態(tài)分布2Z值標(biāo)準(zhǔn)化后的隨機(jī)變量為標(biāo)準(zhǔn)正態(tài)分布3表示方法使用Z-score來(lái)表示標(biāo)準(zhǔn)化后的數(shù)據(jù)標(biāo)準(zhǔn)化操作可以使正態(tài)分布曲線(xiàn)的位置和形狀發(fā)生改變,使其更易于分析和應(yīng)用。標(biāo)準(zhǔn)化后的正態(tài)隨機(jī)變量服從標(biāo)準(zhǔn)正態(tài)分布,其均值為0,標(biāo)準(zhǔn)差為1。這種標(biāo)準(zhǔn)化方法廣泛用于工程和統(tǒng)計(jì)領(lǐng)域,有助于對(duì)原始數(shù)據(jù)進(jìn)行分析比較。正態(tài)分布在工程中的應(yīng)用質(zhì)量控制正態(tài)分布可用于控制產(chǎn)品質(zhì)量,確保生產(chǎn)過(guò)程中的關(guān)鍵參數(shù)維持在合理范圍內(nèi)。可靠性分析工程系統(tǒng)的壽命和故障率常服從正態(tài)分布,有助于預(yù)測(cè)設(shè)備的可靠性。決策分析正態(tài)分布可用于評(píng)估不確定性因素,為工程決策提供數(shù)據(jù)支持。正態(tài)分布的性質(zhì)對(duì)稱(chēng)性正態(tài)分布曲線(xiàn)是一條完美對(duì)稱(chēng)的鐘形曲線(xiàn)。均值為曲線(xiàn)中心,概率密度函數(shù)關(guān)于均值對(duì)稱(chēng)。峰值特征正態(tài)分布曲線(xiàn)在均值處取得最大值,兩邊逐漸下降。標(biāo)準(zhǔn)差決定曲線(xiàn)的尖度和寬度。區(qū)間概率可以利用正態(tài)分布標(biāo)準(zhǔn)分?jǐn)?shù)表計(jì)算任意區(qū)間內(nèi)的概率,為數(shù)據(jù)分析提供依據(jù)。廣泛應(yīng)用正態(tài)分布廣泛應(yīng)用于自然科學(xué)、社會(huì)科學(xué)、工程領(lǐng)域等,是最重要的概率分布之一。中心極限定理1樣本均值樣本均值趨近于總體均值2樣本容量隨著樣本容量增大,趨向正態(tài)分布3隨機(jī)變量無(wú)論原始分布如何,標(biāo)準(zhǔn)化后的隨機(jī)變量呈正態(tài)分布中心極限定理闡述了隨機(jī)變量之和或平均值在樣本容量足夠大時(shí),其分布趨于正態(tài)分布的重要理論。它為統(tǒng)計(jì)推斷和數(shù)據(jù)分析提供了重要基礎(chǔ),是概率論與數(shù)理統(tǒng)計(jì)的核心概念之一。假設(shè)檢驗(yàn)概念理解假設(shè)檢驗(yàn)是一種統(tǒng)計(jì)方法,用于判斷在一定置信水平下,數(shù)據(jù)是否符合某個(gè)假設(shè)。它可以幫助我們確定研究結(jié)果是否具有統(tǒng)計(jì)學(xué)意義。檢驗(yàn)流程首先提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量,最后與臨界值比較以判斷假設(shè)是否成立。檢驗(yàn)類(lèi)型單樣本檢驗(yàn)、雙樣本檢驗(yàn)和方差分析是常見(jiàn)的假設(shè)檢驗(yàn)方法,適用于不同的研究場(chǎng)景和假設(shè)條件。應(yīng)用案例假設(shè)檢驗(yàn)廣泛應(yīng)用于生產(chǎn)制造、醫(yī)療衛(wèi)生、金融等領(lǐng)域,為決策提供有力的統(tǒng)計(jì)學(xué)支持。單樣本檢驗(yàn)1假設(shè)檢驗(yàn)的步驟1.提出原假設(shè)和備擇假設(shè)2.選擇合適的檢驗(yàn)統(tǒng)計(jì)量3.確定顯著性水平2單樣本檢驗(yàn)的應(yīng)用單樣本檢驗(yàn)用于檢驗(yàn)一個(gè)總體均值、比例或方差是否等于某個(gè)已知值。常見(jiàn)于產(chǎn)品質(zhì)量控制、市場(chǎng)調(diào)研等領(lǐng)域。3檢驗(yàn)統(tǒng)計(jì)量及判斷根據(jù)總體分布類(lèi)型選擇合適的檢驗(yàn)統(tǒng)計(jì)量,如Z檢驗(yàn)、T檢驗(yàn)等。通過(guò)計(jì)算統(tǒng)計(jì)量的P值判斷是否拒絕原假設(shè)。雙樣本檢驗(yàn)1比較樣本對(duì)比兩個(gè)不同樣本群體的統(tǒng)計(jì)指標(biāo)2假設(shè)檢驗(yàn)檢驗(yàn)兩組數(shù)據(jù)是否存在顯著性差異3t檢驗(yàn)比較兩組數(shù)據(jù)的均值是否存在差異4方差分析分析多個(gè)組別之間差異的顯著性雙樣本檢驗(yàn)是統(tǒng)計(jì)學(xué)中常用的分析方法之一,用于比較兩個(gè)獨(dú)立樣本群體的統(tǒng)計(jì)特征。通過(guò)假設(shè)檢驗(yàn),可以判斷這兩個(gè)群體之間是否存在顯著性差異,為決策提供依據(jù)。常用的雙樣本檢驗(yàn)方法包括t檢驗(yàn)和方差分析等。方差分析比較多組平均值方差分析能夠比較兩組或多組樣本數(shù)據(jù)的平均值是否存在顯著性差異。這在實(shí)驗(yàn)檢驗(yàn)和工程分析中很常用。分析變異來(lái)源方差分析能夠分解總體方差,識(shí)別出不同因素對(duì)結(jié)果變異的貢獻(xiàn),為問(wèn)題診斷提供依據(jù)。驗(yàn)證假設(shè)檢驗(yàn)通過(guò)方差分析可以對(duì)一些假設(shè),如總體均值相等、方差齊性等進(jìn)行統(tǒng)計(jì)檢驗(yàn)。這為結(jié)論的可信度提供支持?;貧w分析建立模型回歸分析通過(guò)設(shè)立數(shù)學(xué)模型來(lái)研究變量之間的相互依賴(lài)關(guān)系。建立合適的模型可以幫助預(yù)測(cè)未來(lái)的發(fā)展趨勢(shì)。數(shù)據(jù)分析回歸分析需要收集大量數(shù)據(jù),并利用統(tǒng)計(jì)學(xué)方法對(duì)數(shù)據(jù)進(jìn)行分析,挖掘其中的規(guī)律和模式。模型擬合利用數(shù)據(jù)對(duì)回歸模型進(jìn)行參數(shù)估計(jì)和擬合,以最小化預(yù)測(cè)誤差,得到最優(yōu)模型。相關(guān)系數(shù)1定義相關(guān)系數(shù)是用來(lái)度量?jī)蓚€(gè)變量之間線(xiàn)性相關(guān)程度的統(tǒng)計(jì)量。2計(jì)算通過(guò)計(jì)算兩個(gè)變量的協(xié)方差和標(biāo)準(zhǔn)差來(lái)獲得相關(guān)系數(shù)。3范圍相關(guān)系數(shù)的值在-1到1之間,數(shù)值越大表示兩個(gè)變量越相關(guān)。4應(yīng)用相關(guān)分析可以用于研究變量之間的關(guān)聯(lián)性和預(yù)測(cè)建模。相關(guān)性分析數(shù)據(jù)描述通過(guò)分析數(shù)據(jù)點(diǎn)的分布和關(guān)聯(lián),可以了解變量之間的相互影響。相關(guān)系數(shù)相關(guān)系數(shù)可以量化兩個(gè)變量之間的線(xiàn)性相關(guān)程度,取值范圍為-1到1。散點(diǎn)圖分析利用散點(diǎn)圖可以直觀(guān)地展現(xiàn)變量之間的關(guān)系,并判斷是否存在線(xiàn)性相關(guān)。線(xiàn)性回歸1數(shù)據(jù)分析對(duì)數(shù)據(jù)進(jìn)行充分的分析和理解2模型建立確立合適的線(xiàn)性回歸模型3參數(shù)估計(jì)利用最小二乘法估計(jì)模型參數(shù)4模型驗(yàn)證檢驗(yàn)?zāi)P偷臄M合度和預(yù)測(cè)能力5結(jié)果解釋分析回歸系數(shù)的意義并得出結(jié)論線(xiàn)性回歸是一種廣泛應(yīng)用的數(shù)據(jù)分析方法,通過(guò)建立自變量和因變量之間的線(xiàn)性關(guān)系,可以對(duì)因變量進(jìn)行預(yù)測(cè)和分析。其主要步驟包括數(shù)據(jù)分析、模型建立、參數(shù)估計(jì)、模型驗(yàn)證和結(jié)果解釋等。在實(shí)際應(yīng)用中,需要對(duì)每個(gè)步驟進(jìn)行深入的探討和分析,以確保得到可靠的結(jié)論。多元線(xiàn)性回歸數(shù)學(xué)模型多元線(xiàn)性回歸模型使用多個(gè)自變量來(lái)預(yù)測(cè)因變量的值。模型擬合方程為:Y=b0+b1*X1+b2*X2+...+bn*Xn。參數(shù)估計(jì)使用最小二乘法來(lái)估計(jì)回歸系數(shù)b0,b1,b2,...,bn。這些系數(shù)反映了每個(gè)自變量對(duì)因變量的影響程度。模型診斷檢查回歸模型的顯著性、自變量的多重共線(xiàn)性、誤差項(xiàng)的常態(tài)性和等方差性等,確保模型滿(mǎn)足使用前提。預(yù)測(cè)和解釋通過(guò)模型可以預(yù)測(cè)因變量的值,并解釋各自變量對(duì)因變量的影響??蛇M(jìn)行統(tǒng)計(jì)推斷和假設(shè)檢驗(yàn)?;貧w模型診斷模型假設(shè)檢驗(yàn)檢查回歸模型是否滿(mǎn)足假設(shè)條件,如誤差項(xiàng)的正態(tài)性、等方差性和獨(dú)立性??梢允褂媒y(tǒng)計(jì)檢驗(yàn)方法來(lái)評(píng)估假設(shè)。殘差分析通過(guò)分析回歸模型的殘差,可以發(fā)現(xiàn)模型的缺陷和異常數(shù)據(jù)點(diǎn),并據(jù)此改進(jìn)模型。模型預(yù)測(cè)能力評(píng)估使用交叉驗(yàn)證或獨(dú)立測(cè)試數(shù)據(jù)集來(lái)評(píng)估模型的預(yù)測(cè)能力,確保模型具有良好的泛化性能。主成分分析1數(shù)據(jù)壓縮與維度降低主成分分析通過(guò)找到數(shù)據(jù)中的主要變異趨勢(shì),將高維數(shù)據(jù)投影到低維空間,實(shí)現(xiàn)數(shù)據(jù)壓縮和維度降低。2相關(guān)性分析與特征提取它可以識(shí)別出數(shù)據(jù)中的相關(guān)特征,提取出對(duì)總體信息貢獻(xiàn)最大的主成分,用于后續(xù)的分析和建模。3可視化與解釋主成分分析的結(jié)果可以通過(guò)二維或三維圖形直觀(guān)地展示數(shù)據(jù)的結(jié)構(gòu)特征,便于理解和解釋。4廣泛應(yīng)用主成分分析廣泛應(yīng)用于眾多領(lǐng)域,如模式識(shí)別、數(shù)據(jù)挖掘、信號(hào)處理、市場(chǎng)調(diào)研等。聚類(lèi)分析數(shù)據(jù)分組聚類(lèi)分析是一種無(wú)監(jiān)督學(xué)習(xí)算法,它將相似的數(shù)據(jù)點(diǎn)自動(dòng)歸類(lèi)到不同的簇中,以識(shí)別數(shù)據(jù)的潛在模式。識(shí)別相關(guān)性通過(guò)分析每個(gè)簇的特點(diǎn),可以發(fā)現(xiàn)數(shù)據(jù)中的內(nèi)在關(guān)系和特征,為進(jìn)一步的分析和決策提供依據(jù)。優(yōu)化聚類(lèi)聚類(lèi)算法會(huì)根據(jù)目標(biāo)函數(shù)不斷優(yōu)化聚類(lèi)結(jié)果,以獲得更準(zhǔn)確和合理的數(shù)據(jù)分組。應(yīng)用場(chǎng)景聚類(lèi)分析廣泛應(yīng)用于市場(chǎng)細(xì)分、客戶(hù)分類(lèi)、異常檢測(cè)等領(lǐng)域,幫助企業(yè)更好地理解和利用數(shù)據(jù)。隨機(jī)模擬1隨機(jī)數(shù)生成
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)學(xué)院學(xué)生晚出、晚歸、不歸管理辦法
- 2025年度綠色生態(tài)園承建及景觀(guān)裝修合作協(xié)議3篇
- 2024年計(jì)件工作制職工聘用協(xié)議版B版
- 2025年度電商平臺(tái)短信催收合作協(xié)議范本3篇
- 2024年版公司員工通勤巴士租賃協(xié)議版B版
- 2024年贍養(yǎng)老年人義務(wù)合同示例一
- 人教版小學(xué)六年級(jí)數(shù)學(xué)上冊(cè)第二單元《位置與方向(二)》及練習(xí)五課件
- 中國(guó)特色社會(huì)主義理論與實(shí)踐研究(湖大簡(jiǎn)答題)
- 學(xué)校傳染病和突發(fā)公共衛(wèi)生事件處理流程圖
- 2024年檢驗(yàn)類(lèi)之臨床醫(yī)學(xué)檢驗(yàn)技術(shù)(師)通關(guān)試題庫(kù)(有答案)
- 2024-2025學(xué)年外研版七年級(jí)英語(yǔ)下冊(cè) Unit1單詞背誦(不帶音標(biāo))
- 孕產(chǎn)婦高危五色管理(醫(yī)學(xué)講座培訓(xùn)課件)
- 幼兒體適能培訓(xùn)
- 重癥專(zhuān)科護(hù)士理論考試試題及答案
- 燃?xì)猱厴I(yè)論文開(kāi)題報(bào)告
- 2024年低壓電工資格考試必考題庫(kù)及答案(共415題)
- 劉潤(rùn)年度演講2024
- 考研計(jì)算機(jī)學(xué)科專(zhuān)業(yè)基礎(chǔ)(408)研究生考試試題與參考答案(2025年)
- 《漢書(shū)》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 初三第一學(xué)期沖刺中考期末家長(zhǎng)會(huì)
- 2022??低旸S-VM11S-B系列服務(wù)器用戶(hù)手冊(cè)V1.1
評(píng)論
0/150
提交評(píng)論