版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉林省長(zhǎng)春市榆樹(shù)市第一高級(jí)中學(xué)高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.設(shè)、,數(shù)列滿足,,,則()A.對(duì)于任意,都存在實(shí)數(shù),使得恒成立B.對(duì)于任意,都存在實(shí)數(shù),使得恒成立C.對(duì)于任意,都存在實(shí)數(shù),使得恒成立D.對(duì)于任意,都存在實(shí)數(shù),使得恒成立3.函數(shù)(或)的圖象大致是()A. B. C. D.4.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件5.函數(shù)的圖象大致為()A. B.C. D.6.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件7.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.8.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為()A. B. C.或 D.或9.已知函數(shù),則不等式的解集為()A. B. C. D.10.《算數(shù)書(shū)》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.11.設(shè)不等式組,表示的平面區(qū)域?yàn)椋趨^(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.12.存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過(guò)點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過(guò)點(diǎn),則橢圓離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為_(kāi)_____.14.已知,若的展開(kāi)式中的系數(shù)比x的系數(shù)大30,則______.15.已知數(shù)列的前項(xiàng)和且,設(shè),則的值等于_______________.16.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點(diǎn).(1)證明:;(2)求二面角的余弦值.18.(12分)某商店舉行促銷(xiāo)反饋活動(dòng),顧客購(gòu)物每滿200元,有一次抽獎(jiǎng)機(jī)會(huì)(即滿200元可以抽獎(jiǎng)一次,滿400元可以抽獎(jiǎng)兩次,依次類(lèi)推).抽獎(jiǎng)的規(guī)則如下:在一個(gè)不透明口袋中裝有編號(hào)分別為1,2,3,4,5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號(hào)一次比一次大(如1,2,5),則獲得一等獎(jiǎng),獎(jiǎng)金40元;若摸得的小球編號(hào)一次比一次?。ㄈ?,3,1),則獲得二等獎(jiǎng),獎(jiǎng)金20元;其余情況獲得三等獎(jiǎng),獎(jiǎng)金10元.(1)某人抽獎(jiǎng)一次,求其獲獎(jiǎng)金額X的概率分布和數(shù)學(xué)期望;(2)趙四購(gòu)物恰好滿600元,假設(shè)他不放棄每次抽獎(jiǎng)機(jī)會(huì),求他獲得的獎(jiǎng)金恰好為60元的概率.19.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點(diǎn),且平面平面ABCD.(1)證明:平面PNB;(2)問(wèn)棱PA上是否存在一點(diǎn)E,使平面DEM,求的值20.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).證明:;設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.21.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.22.(10分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.2、D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡(jiǎn)得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.3、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過(guò)研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.4、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.5、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過(guò)解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等等排除,可通過(guò)特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢(shì)排除,最后剩下的一個(gè)即為正確選項(xiàng).6、A【解析】
畫(huà)出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問(wèn)題,考查命題的充分條件和必要條件的判斷,難度較易.7、A【解析】
結(jié)合復(fù)數(shù)的除法運(yùn)算和模長(zhǎng)公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長(zhǎng)、平方運(yùn)算,屬于基礎(chǔ)題8、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.9、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)椋詾樯系呐己瘮?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.11、A【解析】
畫(huà)出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫(huà)出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫(huà)可行域,求幾何概型,屬于簡(jiǎn)單題.12、D【解析】
根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^(guò)點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問(wèn)題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點(diǎn)的坐標(biāo),然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點(diǎn)的坐標(biāo),,,,則三角形的面積為.故答案為:【點(diǎn)睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中檔題.14、2【解析】
利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),求得的值.【詳解】展開(kāi)式通項(xiàng)為:且的展開(kāi)式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結(jié)果:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.15、7【解析】
根據(jù)題意,當(dāng)時(shí),,可得,進(jìn)而得數(shù)列為等比數(shù)列,再計(jì)算可得,進(jìn)而可得結(jié)論.【詳解】由題意,當(dāng)時(shí),,又,解得,當(dāng)時(shí),由,所以,,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,故,又,,所以,.故答案為:.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計(jì)算能力,計(jì)算得是解決本題的關(guān)鍵,屬于中檔題.16、【解析】
化簡(jiǎn)得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)取的中點(diǎn),結(jié)合三角形中位線和長(zhǎng)度關(guān)系,為平行四邊形,進(jìn)而得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以,,為,,軸建立空間直角坐標(biāo)系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點(diǎn),連結(jié),因?yàn)闉橹悬c(diǎn),,,所以,,∴為平行四邊形,所以,又因?yàn)?,所以;?)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標(biāo)系,則,,,,,,易知面的法向量為設(shè)面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點(diǎn)睛】本題考查立體幾何中直線與平面平行關(guān)系的證明、空間向量法求解二面角,正確求解法向量是解題的關(guān)鍵,屬于中檔題.18、(1)分布見(jiàn)解析,期望為;(2).【解析】
(1)先明確X的可能取值,分別求解其概率,然后寫(xiě)出分布列,利用期望公式可求期望;(2)獲得的獎(jiǎng)金恰好為60元,可能是三次二等獎(jiǎng),也可能是一次一等獎(jiǎng),兩次三等獎(jiǎng),然后分別求解概率即可.【詳解】(1)由題意知,隨機(jī)變量X的可能取值為10,20,40且,,所以,即隨機(jī)變量X的概率分布為X102040P所以隨機(jī)變量X的數(shù)學(xué)期望.(2)由題意知,趙四有三次抽獎(jiǎng)機(jī)會(huì),設(shè)恰好獲得60元為事件A,因?yàn)?0=20×3=40+10+10,所以.【點(diǎn)睛】本題主要考查隨機(jī)變量的分布列及數(shù)學(xué)期望,明確隨機(jī)變量的所有取值是求解的第一步,再求解對(duì)應(yīng)的概率,側(cè)重考查數(shù)學(xué)建模的核心素養(yǎng).19、(1)證明見(jiàn)解析;(2)存在,.【解析】
(1)根據(jù)題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點(diǎn)Q,連接EQ,利用線面平行的性質(zhì)定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點(diǎn),∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點(diǎn),∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點(diǎn)Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點(diǎn)E,使平面DEM,此時(shí),E是棱A的靠近點(diǎn)A的三等分點(diǎn).【點(diǎn)睛】本題考查了線面垂直的判定定理、線面平行的性質(zhì)定理,考查了學(xué)生的推理能力以及空間想象能力,屬于空間幾何中的基礎(chǔ)題.20、(1)見(jiàn)解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異面直線與所成角的余弦值為,得點(diǎn)M的坐標(biāo),從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 營(yíng)銷(xiāo)講師培訓(xùn)課程設(shè)計(jì)
- 蒸汽壓力課程設(shè)計(jì)
- 題圖7軸承座課程設(shè)計(jì)
- 網(wǎng)絡(luò)課課程設(shè)計(jì)
- 飲品鋪?zhàn)诱n程設(shè)計(jì)思路
- 英語(yǔ)技術(shù)展示課程設(shè)計(jì)
- 律師事務(wù)所解除法律顧問(wèn)合同的通知
- 框架合同于非框架合同,范本
- 2025年運(yùn)載火箭運(yùn)輸設(shè)備項(xiàng)目提案報(bào)告模稿
- 2024年工會(huì)集體協(xié)商合同
- 2024-2025部編版語(yǔ)文一年級(jí)上冊(cè)語(yǔ)文園地八
- 門(mén)窗幕墻密封條培訓(xùn)
- 細(xì)胞生物學(xué)練習(xí)題庫(kù)與參考答案
- 退休延期留用崗位協(xié)議書(shū)
- 關(guān)于成立低空經(jīng)濟(jì)公司可行性分析報(bào)告
- GB/T 44545-2024制冷系統(tǒng)試驗(yàn)
- 2024新一代變電站集中監(jiān)控系統(tǒng)系列規(guī)范第2部分:設(shè)計(jì)規(guī)范
- 2024年煤礦溺水事故心得體會(huì)(四篇)
- 快樂(lè)寒假安全先行寒假安全教育主題班會(huì)課件
- 北師大版四年級(jí)數(shù)學(xué)上冊(cè)口算天天練題卡2
- 滑模施工計(jì)算書(shū)及相關(guān)圖紙
評(píng)論
0/150
提交評(píng)論