版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省石家莊康福外國語學校2025屆高考數(shù)學三模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={x|x<1},B={x|},則A. B.C. D.2.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立3.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.34.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或5.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.36.已知復數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.7.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.8.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.9.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.310.的展開式中的系數(shù)為()A. B. C. D.11.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機爬行,則在離三個頂點距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.12.已知復數(shù),則的虛部為()A.-1 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.一個袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數(shù)字最大的為4的概率是__.14.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.15.已知,為正實數(shù),且,則的最小值為________________.16.已知數(shù)列的前項滿足,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設(shè),是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.19.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.20.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.21.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當時,.(1)求的值;(2)設(shè)線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.22.(10分)已知函數(shù)(1)若對任意恒成立,求實數(shù)的取值范圍;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】∵集合∴∵集合∴,故選A2、D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當時,數(shù)列單調(diào)遞增,則;當時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.3、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎(chǔ)題.4、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.5、B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標之間的關(guān)系,考查計算能力,屬于中檔題.6、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎(chǔ)題.7、D【解析】
根據(jù)空間向量的線性運算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎(chǔ)題.8、B【解析】
構(gòu)造函數(shù)(),求導可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.9、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進而求得結(jié)果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.10、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運算等有關(guān)方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應(yīng)用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.11、A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計算能力,屬于中等題.12、A【解析】
分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題,得滿足題目要求的情況有,①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.14、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.15、【解析】
由,為正實數(shù),且,可知,于是,可得,再利用基本不等式即可得出結(jié)果.【詳解】解:,為正實數(shù),且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質(zhì)應(yīng)用,恰當變形是解題的關(guān)鍵,屬于中檔題.16、【解析】
由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時要注意的求解方法.【詳解】∵①,∴時,②,①-②得,∴,又,∴().故答案為:.【點睛】本題考查求數(shù)列通項公式,由已知條件.類比已知求的解題方法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)證明見解析,定點【解析】
(1)設(shè),由題意可知,對的正負分情況討論,從而求得動點的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點.【詳解】(1)設(shè),動點到定點的距離比到軸的距離多,,時,解得,時,解得.動點的軌跡的方程為或(2)證明:如圖,設(shè),,由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達定理知,,①顯然,,,,將①式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點.【點睛】本題主要考查了動點軌跡,考查了直線與拋物線的綜合,是中檔題.18、(1)();(2)【解析】
(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標方程的互化公式運算即可;(2)設(shè),,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因為,設(shè),,則,,.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,考查學生的計算能力,是一道容易題.19、(1);(2).【解析】
(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當時,”恒成立,利用絕對值不等式的性質(zhì)可得:,問題得解.【詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉(zhuǎn)化能力及絕對值不等式的性質(zhì),考查計算能力,屬于中檔題.20、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復合函數(shù)求導法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當,.,當,,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導數(shù)研究函數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復合函數(shù)求導,函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.21、(1)1;(2)見解析【解析】
(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫出韋達定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導數(shù)的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點睛】本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達定理、弦長公式以及利用導數(shù)求切線方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 布袋麻袋項目立項申請報告
- 模具項目立項報告
- 2024年度家居地毯設(shè)計定制與銷售合同協(xié)議3篇
- 云存儲數(shù)據(jù)泄露溯源-洞察分析
- 體育俱樂部環(huán)境責任-洞察分析
- 微電網(wǎng)儲能應(yīng)用-洞察分析
- 2024年技術(shù)轉(zhuǎn)讓協(xié)議3篇
- 2024年度有機農(nóng)產(chǎn)品種植土地租賃服務(wù)協(xié)議3篇
- 2025鋼材購銷合同范例
- 2025買賣商鋪合同范文
- 【期末復習提升卷】浙教版2022-2023學年八年級上學期數(shù)學期末壓軸題綜合訓練試卷1(解析版)
- 山東省臨沂市費縣2023-2024學年八年級上學期1月期末生物試題
- 2024年廣東石油化工學院公開招聘部分新機制合同工20名歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 青年產(chǎn)業(yè)園鋁灰和廢酸資源化綜合利用試驗項目環(huán)評報告表
- PDCA血液透析水循環(huán)案例匯報
- 巖石鉆機施工方案
- 山東省煙臺市2023-2024學年七年級上學期期末數(shù)學試題(含答案)
- 2024年貴州省銅仁市四年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析
- 2024年貴陽市小河區(qū)四上數(shù)學期末教學質(zhì)量檢測模擬試題含解析
- 北京社區(qū)食堂招商方案
- 2024-2025學年大連市沙河口區(qū)四上數(shù)學期末檢測試題含解析
評論
0/150
提交評論