2025屆湖南省郴州市重點(diǎn)中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆湖南省郴州市重點(diǎn)中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆湖南省郴州市重點(diǎn)中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆湖南省郴州市重點(diǎn)中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆湖南省郴州市重點(diǎn)中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆湖南省郴州市重點(diǎn)中學(xué)高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.2.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.3.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.4.已知函數(shù)的圖像的一條對(duì)稱軸為直線,且,則的最小值為()A. B.0 C. D.5.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米6.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則()A. B. C. D.7.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.8.過(guò)橢圓的左焦點(diǎn)的直線過(guò)的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.9.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.10.已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.11.已知函數(shù),則()A. B. C. D.12.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為__________.14.已知三棱錐的四個(gè)頂點(diǎn)都在球O的球面上,,,,,E,F(xiàn)分別為,的中點(diǎn),,則球O的體積為______.15.已知函數(shù),若方程的解為,(),則_______;_______.16.已知點(diǎn)是拋物線上動(dòng)點(diǎn),是拋物線的焦點(diǎn),點(diǎn)的坐標(biāo)為,則的最小值為______________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.18.(12分)△的內(nèi)角的對(duì)邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長(zhǎng).19.(12分)已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.20.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.21.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.2、D【解析】

構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類討論,考查推理能力,屬于中等題.3、D【解析】

利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.4、D【解析】

運(yùn)用輔助角公式,化簡(jiǎn)函數(shù)的解析式,由對(duì)稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡(jiǎn)函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱性與最值是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題.5、D【解析】

根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.6、B【解析】

求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對(duì)應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.7、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.8、D【解析】

求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.9、B【解析】

根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因?yàn)?,所以四邊形為平行四邊?又因?yàn)槠矫?,平面,所以平面,所以平?在直角三角形中,,設(shè),則,所以,所以.又因?yàn)?,?dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以.故選:B.【點(diǎn)睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長(zhǎng)為,用建立體積與邊長(zhǎng)的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.10、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.11、A【解析】

根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.12、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.14、【解析】

可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計(jì)算可得.【詳解】解:,,,因?yàn)闉榈闹悬c(diǎn),所以為的外心,因?yàn)?,所以點(diǎn)在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【點(diǎn)睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計(jì)算能力,屬于中檔題.15、【解析】

求出在上的對(duì)稱軸,依據(jù)對(duì)稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因?yàn)?,所以關(guān)于對(duì)稱.則.由,則由可知,,又因?yàn)椋?,則,即故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱軸,考查了誘導(dǎo)公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯(cuò)點(diǎn)在于沒(méi)有正確判斷的取值范圍,導(dǎo)致求出.在求的對(duì)稱軸時(shí),常用整體代入法,即令進(jìn)行求解.16、【解析】

過(guò)點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角.故當(dāng)和拋物線相切時(shí),的值最小.再利用直線的斜率公式、導(dǎo)數(shù)的幾何意義求得切點(diǎn)的坐標(biāo),從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點(diǎn),準(zhǔn)線方程為,過(guò)點(diǎn)作垂直于準(zhǔn)線,為垂足,則由拋物線的定義可得,則,為銳角.故當(dāng)最小時(shí),的值最小.設(shè)切點(diǎn),由的導(dǎo)數(shù)為,則的斜率為,求得,可得,,,.故答案為:.【點(diǎn)睛】本題考查拋物線的定義,性質(zhì)的簡(jiǎn)單應(yīng)用,直線的斜率公式,導(dǎo)數(shù)的幾何意義,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對(duì)曲線C的極坐標(biāo)方程兩邊同時(shí)乘以,利用可得曲線C的直角坐標(biāo)方程;(2)求出點(diǎn)到直線的距離,再求出的弦長(zhǎng),從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因?yàn)棣眩?sin所以ρ=2sinθ+2cosθ,兩邊同時(shí)乘以得,ρ2=2ρsinθ+2ρcosθ,因?yàn)?,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)∵原點(diǎn)O到直線l的距離直線l過(guò)圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點(diǎn)睛】本題考查了直線與圓的極坐標(biāo)方程與普通方程、參數(shù)方程與普通方程的互化知識(shí),解題的關(guān)鍵是正確使用這一轉(zhuǎn)化公式,還考查了直線與圓的位置關(guān)系等知識(shí).18、(I);(II).【解析】

試題分析:(I)由已知可得;(II)依題意得:的周長(zhǎng)為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長(zhǎng)為.考點(diǎn):1、解三角形;2、三角恒等變換.19、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】

(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點(diǎn)的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時(shí),,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時(shí),令,解得或,當(dāng)或時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當(dāng)時(shí),所以在上無(wú)零點(diǎn);(Ⅱ)當(dāng)時(shí),,①若,即,則是的一個(gè)零點(diǎn);②若,即,則不是的零點(diǎn)(Ⅲ)當(dāng)時(shí),,所以此時(shí)只需考慮函數(shù)在上零點(diǎn)的情況,因?yàn)?所以①當(dāng)時(shí),在上單調(diào)遞增。又,所以(?。┊?dāng)時(shí),在上無(wú)零點(diǎn);(ⅱ)當(dāng)時(shí),,又,所以此時(shí)在上恰有一個(gè)零點(diǎn);②當(dāng)時(shí),令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)?,所以此時(shí)在上恰有一個(gè)零點(diǎn),綜上,【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導(dǎo)數(shù)處理零點(diǎn)個(gè)數(shù)問(wèn)題,考查運(yùn)算能力,考查分類討論思想20、(1)單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間(2)證明見解析【解析】

(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡(jiǎn)為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域?yàn)?,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)椋醋C,令,則,令,則,當(dāng)時(shí),,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),,令,,,可知對(duì)于恒成立,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論