江蘇省張家港市外國語學(xué)校2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁
江蘇省張家港市外國語學(xué)校2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁
江蘇省張家港市外國語學(xué)校2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁
江蘇省張家港市外國語學(xué)校2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁
江蘇省張家港市外國語學(xué)校2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省張家港市外國語學(xué)校2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.42.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度3.某校在高一年級進(jìn)行了數(shù)學(xué)競賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.124.已知F為拋物線y2=4x的焦點(diǎn),過點(diǎn)F且斜率為1的直線交拋物線于A,B兩點(diǎn),則||FA|﹣|FB||的值等于()A. B.8 C. D.45.已知正方體的棱長為,,,分別是棱,,的中點(diǎn),給出下列四個命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.6.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值7.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當(dāng)球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6428.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.9.已知非零向量滿足,若夾角的余弦值為,且,則實(shí)數(shù)的值為()A. B. C.或 D.10.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.11.已知三棱柱()A. B. C. D.12.如圖所示,矩形的對角線相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開式的各項(xiàng)系數(shù)之和為_____,含項(xiàng)的系數(shù)為_____.14.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是______.15.如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點(diǎn)、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.16.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)都是正數(shù),且,.求證:.18.(12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點(diǎn),延長線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.19.(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為證明:.20.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意成立,求實(shí)數(shù)的取值范圍.21.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.22.(10分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.2、C【解析】

依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計(jì)算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)以及三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.3、D【解析】

根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識;考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.4、C【解析】

將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點(diǎn)睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.5、C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.6、B【解析】

判斷直線與縱軸交點(diǎn)的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.7、A【解析】

設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個:(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c8、D【解析】

根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時,取最大值,又對所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.9、D【解析】

根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點(diǎn)睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.10、B【解析】

建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.11、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=12、A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將代入二項(xiàng)式可得展開式各項(xiàng)系數(shù)之和,寫出二項(xiàng)展開式通項(xiàng),令的指數(shù)為,求出參數(shù)的值,代入通項(xiàng)即可得出項(xiàng)的系數(shù).【詳解】將代入二項(xiàng)式可得展開式各項(xiàng)系數(shù)和為.二項(xiàng)式的展開式通項(xiàng)為,令,解得,因此,展開式中含項(xiàng)的系數(shù)為.故答案為:;.【點(diǎn)睛】本題考查了二項(xiàng)式定理及二項(xiàng)式展開式通項(xiàng)公式,屬基礎(chǔ)題.14、1【解析】

該程序的功能為利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運(yùn)行,可得:,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,此時滿足條件,退出循環(huán),輸出的值為1.故答案為:1.【點(diǎn)睛】本題考查程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,屬于基礎(chǔ)題.15、①③【解析】

連接、交于點(diǎn),取的中點(diǎn),證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面與平面垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對于命題①,連接、交于點(diǎn),取的中點(diǎn)、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點(diǎn),為的中點(diǎn),且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對于命題②,,平面,平面,平面,若四點(diǎn)、、、共面,則這四點(diǎn)可確定平面,則,平面平面,由線面平行的性質(zhì)定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯誤;對于命題③,連接、,設(shè),則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內(nèi)的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對于命題④,假設(shè)平面與平面垂直,過點(diǎn)在平面內(nèi)作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯誤.故答案為:①③.【點(diǎn)睛】本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點(diǎn)共面的判斷,考查推理能力,屬于中等題.16、【解析】

將代入求解即可;當(dāng)為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析【解析】

利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。18、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點(diǎn),∴不過原點(diǎn)且與有兩個交點(diǎn)的充要條件是,由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為.∴由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r,四邊形為平行四邊形.考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點(diǎn)弦,當(dāng)直線與圓錐曲線相交時,點(diǎn)是弦的中點(diǎn),(1)知道中點(diǎn)坐標(biāo),求直線的斜率,或知道直線斜率求中點(diǎn)坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時,也可以選擇點(diǎn)差法,設(shè),,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結(jié)果,(2)對于用坐標(biāo)法來解決幾何性質(zhì)問題,那么就要求首先看出幾何關(guān)系滿足什么條件,其次用坐標(biāo)表示這些幾何關(guān)系,本題的關(guān)鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯(lián)立求兩個坐標(biāo),最后求斜率.19、(1)(2)證明見解析【解析】

(1)因?yàn)?,所以,所以,即,又因?yàn)?,所以?shù)列為等差數(shù)列,且公差為1,首項(xiàng)為1,則,即.設(shè)的公差為,則,所以(),則(),所以,因此,綜上,.(2)設(shè)數(shù)列的前n項(xiàng)和為,則兩式相減得,所以,設(shè)則,所以.20、(1)(2)【解析】

(1)把代入,利用零點(diǎn)分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論