河北省衡水市安平縣安平中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第1頁(yè)
河北省衡水市安平縣安平中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第2頁(yè)
河北省衡水市安平縣安平中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第3頁(yè)
河北省衡水市安平縣安平中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第4頁(yè)
河北省衡水市安平縣安平中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省衡水市安平縣安平中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.2.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.63.已知直四棱柱的所有棱長(zhǎng)相等,,則直線(xiàn)與平面所成角的正切值等于()A. B. C. D.4.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.125.圓錐底面半徑為,高為,是一條母線(xiàn),點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線(xiàn)的距離的最大值是()A. B. C. D.6.函數(shù)圖像可能是()A. B. C. D.7.雙曲線(xiàn)x2a2A.y=±2x B.y=±3x8.設(shè)函數(shù)的導(dǎo)函數(shù),且滿(mǎn)足,若在中,,則()A. B. C. D.9.下列不等式正確的是()A. B.C. D.10.已知為虛數(shù)單位,若復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.11.已知傾斜角為的直線(xiàn)與直線(xiàn)垂直,則()A. B. C. D.12.若函數(shù)()的圖象過(guò)點(diǎn),則()A.函數(shù)的值域是 B.點(diǎn)是的一個(gè)對(duì)稱(chēng)中心C.函數(shù)的最小正周期是 D.直線(xiàn)是的一條對(duì)稱(chēng)軸二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,若,則__________.14.在直角三角形中,為直角,,點(diǎn)在線(xiàn)段上,且,若,則的正切值為_(kāi)____.15.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.16.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.18.(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求的值.19.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿(mǎn)足AD∥BC,,,E為AD的中點(diǎn),AC與BE的交點(diǎn)為O.(1)設(shè)H是線(xiàn)段BE上的動(dòng)點(diǎn),證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線(xiàn)BC與平面PBD所成角的余弦值.20.(12分)已知函數(shù)(1)求函數(shù)在處的切線(xiàn)方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.21.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線(xiàn)的參數(shù)方程:(為參數(shù)),直線(xiàn)的極坐標(biāo)方程:(1)求曲線(xiàn)的極坐標(biāo)方程;(2)若直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),求的最大值.22.(10分)已知橢圓,直線(xiàn)不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線(xiàn)段的中點(diǎn)為.(Ⅰ)證明:直線(xiàn)的斜率與的斜率的乘積為定值;(Ⅱ)若過(guò)點(diǎn),延長(zhǎng)線(xiàn)段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.2、C【解析】

方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)椋?,則.故選C.3、D【解析】

以為坐標(biāo)原點(diǎn),所在直線(xiàn)為x軸,所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線(xiàn)面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線(xiàn)為x軸,所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線(xiàn)與平面所成角為,則,,∴直線(xiàn)與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線(xiàn)面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、C【解析】

分析:先畫(huà)出滿(mǎn)足約束條件對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線(xiàn)的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過(guò)點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線(xiàn)性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫(huà)出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫(huà)出一條直線(xiàn),上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.5、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線(xiàn),點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過(guò)的軸截面如圖:,過(guò)作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線(xiàn)面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.6、D【解析】

先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來(lái)越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.7、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線(xiàn)方程求漸近線(xiàn)方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線(xiàn)方程為y=±bax點(diǎn)睛:已知雙曲線(xiàn)方程x2a28、D【解析】

根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因?yàn)楫?dāng)時(shí),,即,所以,在上是增函數(shù),在中,因?yàn)?,所以,,因?yàn)?,且,所以,即,所以,即故選:D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運(yùn)算求解的能力,屬于中檔題.9、D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問(wèn)題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、A【解析】分析:題設(shè)中復(fù)數(shù)滿(mǎn)足的等式可以化為,利用復(fù)數(shù)的四則運(yùn)算可以求出.詳解:由題設(shè)有,故,故選A.點(diǎn)睛:本題考查復(fù)數(shù)的四則運(yùn)算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.11、D【解析】

傾斜角為的直線(xiàn)與直線(xiàn)垂直,利用相互垂直的直線(xiàn)斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因?yàn)橹本€(xiàn)與直線(xiàn)垂直,所以,.又為直線(xiàn)傾斜角,解得.故選:D.【點(diǎn)睛】本題考查了相互垂直的直線(xiàn)斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】

根據(jù)函數(shù)的圖像過(guò)點(diǎn),求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過(guò)點(diǎn),可得,即,,,故,對(duì)于A,由,則,故A正確;對(duì)于B,當(dāng)時(shí),,故B錯(cuò)誤;對(duì)于C,,故C錯(cuò)誤;對(duì)于D,當(dāng)時(shí),,故D錯(cuò)誤;故選:A【點(diǎn)睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無(wú)序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿(mǎn)足互異性.14、3【解析】

在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點(diǎn)睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.15、【解析】

利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.16、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】

(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過(guò)分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域?yàn)?當(dāng)時(shí),.令,解得(舍去),.當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,,不合題意,,即.此時(shí)構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來(lái)求解,考查推理能力與運(yùn)算求解能力,屬于難題.18、(1)見(jiàn)解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),,沒(méi)有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時(shí),等價(jià)于.設(shè)函數(shù),則.當(dāng)時(shí),,所以在單調(diào)遞減.而,故當(dāng)時(shí),,即.(2)設(shè)函數(shù).在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),,沒(méi)有零點(diǎn);(ii)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒(méi)有零點(diǎn);②若,即,在只有一個(gè)零點(diǎn);③若,即,由于,所以在有一個(gè)零點(diǎn),由(1)知,當(dāng)時(shí),,所以.故在有一個(gè)零點(diǎn),因此在有兩個(gè)零點(diǎn).綜上,在只有一個(gè)零點(diǎn)時(shí),.點(diǎn)睛:利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.19、(1)證明見(jiàn)解析(2)(3)【解析】

(1)因?yàn)榈酌鍭BCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因?yàn)镠為線(xiàn)段BE上的動(dòng)點(diǎn),的面積是定值,從而三棱錐的體積是定值.(2)因?yàn)槠矫?,所以,結(jié)合BE∥CD,所以,又因?yàn)?,,且E為AD的中點(diǎn),所以四邊形ABCE為正方形,所以,結(jié)合,則平面,連接,則,因?yàn)槠矫?,所以,因?yàn)椋允堑妊苯侨切?,O為斜邊AC上的中點(diǎn),所以,且,所以平面,所以PO是四棱錐的高,又因?yàn)樘菪蜛BCD的面積為,在中,,所以.(3)以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設(shè)平面PBD的法向量為,則即則,令,得到,設(shè)BC與平面PBD所成的角為,則,所以,所以直線(xiàn)BC與平面PBD所成角的余弦值為.20、(1);(2)【解析】

(1)求出,即可求出切線(xiàn)的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿(mǎn)足,,求出,當(dāng)時(shí)求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時(shí)切點(diǎn)坐標(biāo)為所以切線(xiàn)方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時(shí)時(shí),,時(shí),,故存在使得且當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),取得極小值,也是最小值,故由于,所以,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問(wèn)題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.21、(1);(2)10【解析】

(1)消去參數(shù),可得曲線(xiàn)C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線(xiàn)C的極坐標(biāo)方程;(2)將代入曲線(xiàn)C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線(xiàn)C的參數(shù)方程為,消去參數(shù),可得曲線(xiàn)C的普通方程為,即,又由,代入可得曲線(xiàn)C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論