山東省滕州市第一中學2025屆高考仿真卷數學試卷含解析_第1頁
山東省滕州市第一中學2025屆高考仿真卷數學試卷含解析_第2頁
山東省滕州市第一中學2025屆高考仿真卷數學試卷含解析_第3頁
山東省滕州市第一中學2025屆高考仿真卷數學試卷含解析_第4頁
山東省滕州市第一中學2025屆高考仿真卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省滕州市第一中學2025屆高考仿真卷數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.國家統(tǒng)計局服務業(yè)調查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經理指數(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數為49.4%D.12個月的PMI值的中位數為50.3%2.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.3.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.4.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.用1,2,3,4,5組成不含重復數字的五位數,要求數字4不出現在首位和末位,數字1,3,5中有且僅有兩個數字相鄰,則滿足條件的不同五位數的個數是()A.48 B.60 C.72 D.1206.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π8.若直線l不平行于平面α,且l?α,則()A.α內所有直線與l異面B.α內只存在有限條直線與l共面C.α內存在唯一的直線與l平行D.α內存在無數條直線與l相交9.已知是定義在上的奇函數,當時,,則()A. B.2 C.3 D.10.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.11.已知函數,為的零點,為圖象的對稱軸,且在區(qū)間上單調,則的最大值是()A. B. C. D.12.已知函數()的最小值為0,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數是__________.(用數字填寫答案)14.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.15.已知數列的前項和公式為,則數列的通項公式為___.16.設定義域為的函數滿足,則不等式的解集為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.19.(12分)的內角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積20.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統(tǒng)計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.21.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽?。媒Y果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?22.(10分)已知函數(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據圖形中的信息,可得頻率、平均值的估計、眾數、中位數,從而得到答案.【詳解】對A,從圖中數據變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數為49.4%,故C正確,;對D,12個月的PMI值的中位數為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數、中位數計算,考查數據處理能力,屬于基礎題.2、A【解析】

根據雙曲線的焦距是虛軸長的2倍,可得出,結合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質,以及雙曲線的漸近線方程.3、C【解析】

先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.4、A【解析】

根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.5、A【解析】

對數字分類討論,結合數字中有且僅有兩個數字相鄰,利用分類計數原理,即可得到結論【詳解】數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個數字出現在第位時,同理也有個數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個故滿足條件的不同的五位數的個數是個故選【點睛】本題主要考查了排列,組合及簡單計數問題,解題的關鍵是對數字分類討論,屬于基礎題。6、A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.7、C【解析】

兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.8、D【解析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點睛】本題主要考查直線與平面的位置關系,直線與直線的位置關系,難度不大.9、A【解析】

由奇函數定義求出和.【詳解】因為是定義在上的奇函數,.又當時,,.故選:A.【點睛】本題考查函數的奇偶性,掌握奇函數的定義是解題關鍵.10、A【解析】

設為、的夾角,根據題意求得,然后建立平面直角坐標系,設,,,根據平面向量數量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數形結合思想的應用,屬于中等題.11、B【解析】

由題意可得,且,故有①,再根據,求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數,,為的零點,為圖象的對稱軸,,且,、,,即為奇數①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【點睛】本題主要考查正弦函數的圖象的特征,正弦函數的周期性以及它的圖象的對稱性,屬于中檔題.12、C【解析】

設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據組合的知識,結合組合數的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.14、【解析】

設直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.15、【解析】

由題意,根據數列的通項與前n項和之間的關系,即可求得數列的通項公式.【詳解】由題意,可知當時,;當時,.又因為不滿足,所以.【點睛】本題主要考查了利用數列的通項與前n項和之間的關系求解數列的通項公式,其中解答中熟記數列的通項與前n項和之間的關系,合理準確推導是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、【解析】

根據條件構造函數F(x),求函數的導數,利用函數的單調性即可得到結論.【詳解】設F(x),則F′(x),∵,∴F′(x)>0,即函數F(x)在定義域上單調遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數單調性的判斷和應用,根據條件構造函數是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(為參數);(Ⅱ)【解析】

(Ⅰ)設點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【詳解】(Ⅰ)設點,,,故,故的參數方程為:(為參數).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【點睛】本題考查了參數方程,極坐標方程,弦長,意在考查學生的計算能力和轉化能力.18、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數方程代入圓C的直角坐標方程,由直線參數方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據韋達定理可得結果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設t1,t2是上述方程的兩實數根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.19、(1).(2).【解析】

由已知利用正弦定理,同角三角函數基本關系式可求,結合范圍,可求,由已知利用二倍角的余弦函數公式可得,結合范圍,可求A,根據三角形的內角和定理即可解得C的值.由及正弦定理可得b的值,根據兩角和的正弦函數公式可求sinC的值,進而根據三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點睛】本題主要考查了正弦定理,同角三角函數基本關系式,二倍角的余弦函數公式,三角形的內角和定理,兩角和的正弦函數公式,三角形的面積公式等知識在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.20、(1),,,中位數;(2)①三層中抽取的人數分別為2,5,13;②【解析】

(1)根據頻率分布直方表的性質,即可求得,得到,,再結合中位數的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據抽樣比,求得在三層中抽取的人數;②由①知,設內被抽取的學生分別為,內被抽取的學生分別為,利用列舉法得到基本事件的總數,利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數為小時,則,解得,即一周課外讀書時間的中位數約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數分別為20,50,130,所以從,,三層中抽取的人數分別為2,5,13.②由①知,在,兩層中共抽取7人,設內被抽取的學生分別為,內被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質,中位數的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.21、(1)(2)選擇方案二更為劃算【解析】

(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論