2025屆云南省峨山縣一中高考仿真卷數(shù)學試題含解析_第1頁
2025屆云南省峨山縣一中高考仿真卷數(shù)學試題含解析_第2頁
2025屆云南省峨山縣一中高考仿真卷數(shù)學試題含解析_第3頁
2025屆云南省峨山縣一中高考仿真卷數(shù)學試題含解析_第4頁
2025屆云南省峨山縣一中高考仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省峨山縣一中高考仿真卷數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.2.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為()(注:)A.1624 B.1024 C.1198 D.15603.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.4.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.35.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.6.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.7.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.8.已知復數(shù)在復平面內(nèi)對應的點的坐標為,則下列結論正確的是()A. B.復數(shù)的共軛復數(shù)是C. D.9.已知角的終邊經(jīng)過點,則A. B.C. D.10.若復數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或11.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.12.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.14.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.15.已知是偶函數(shù),則的最小值為___________.16.在中,角所對的邊分別為,,的平分線交于點D,且,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.18.(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.20.(12分)已知函數(shù).(Ⅰ)當時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調遞減,求實數(shù)的取值范圍.21.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實數(shù)的取值范圍.22.(10分)已知凸邊形的面積為1,邊長,,其內(nèi)部一點到邊的距離分別為.求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.2、B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項公式和前項和,利用累加法求得數(shù)列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數(shù)列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查累加法求數(shù)列的通項公式,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.3、B【解析】

求出導函數(shù),確定函數(shù)的單調性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【點睛】本題考查函數(shù)的零點,考查用導數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.4、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;5、D【解析】

畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學結合的思想判斷方程的根,難度較大,屬于中檔題.6、D【解析】

取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.7、A【解析】

由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關鍵是對新定義的理解.8、D【解析】

首先求得,然后根據(jù)復數(shù)乘法運算、共軛復數(shù)、復數(shù)的模、復數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數(shù),則,所以A選項不正確;復數(shù)的共軛復數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數(shù)的幾何意義,共軛復數(shù),復數(shù)的模,復數(shù)的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想.9、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.10、C【解析】試題分析:因為復數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)11、A【解析】

求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質的應用.12、C【解析】

由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.14、【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.15、2【解析】

由偶函數(shù)性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數(shù)的奇偶性、基本不等式,屬于基礎題16、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質和三角形面積公式得,化簡得,因此當且僅當時取等號,則的最小值為.點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)取的中點,證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點到平面的距離可求.【詳解】解:(1)如圖:取的中點,連接、.在中,是的中點,是的中點,平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點是圓上異于、的一點,又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點到平面的距離為故答案為:.【點睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.18、(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進行分類討論,結合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數(shù)為增函數(shù);當時,,此時,函數(shù)為減函數(shù).,.①當,即當時,函數(shù)有一個零點;②當,即當時,函數(shù)有兩個零點;③當,即當時,函數(shù)有三個零點;④當,即當時,函數(shù)有兩個零點;⑤當,即當時,函數(shù)只有一個零點.綜上所述,當或時,函數(shù)只有一個零點;當或時,函數(shù)有兩個零點;當時,函數(shù)有三個零點.【點睛】本題考查了利用導數(shù)的幾何意義研究切線方程和利用導數(shù)研究函數(shù)的單調性與極值,關鍵是分類討論思想的應用,屬難題.19、(1)(2)(3)直線平面,證明見解析【解析】

取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,求出平面的一個法向量.(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標,由,結合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點,連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設平面的一個法向量為.由,取,得.(1)證明:設直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設平面的一個法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理能力與計算能力,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調性即可求解.(Ⅱ)根據(jù)對數(shù)函數(shù)的單調性可得在上單調遞增,再利用二次函數(shù)的圖像與性質可得解不等式組即可求解.【詳解】(Ⅰ)當時,,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;(Ⅱ)因為函數(shù)在上單調遞減,故在上單調遞增,則解得,綜上所述,實數(shù)的取值范圍.【點睛】本題主要考查了利用對數(shù)函數(shù)的單調性求值域、利用對數(shù)型函數(shù)的單調區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質,屬于中檔題.21、(1)(2)【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論