![2025屆遼寧省盤錦市遼河油田一中高三壓軸卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view6/M03/14/15/wKhkGWd6iZWADc66AAIGfD9jTAI045.jpg)
![2025屆遼寧省盤錦市遼河油田一中高三壓軸卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view6/M03/14/15/wKhkGWd6iZWADc66AAIGfD9jTAI0452.jpg)
![2025屆遼寧省盤錦市遼河油田一中高三壓軸卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view6/M03/14/15/wKhkGWd6iZWADc66AAIGfD9jTAI0453.jpg)
![2025屆遼寧省盤錦市遼河油田一中高三壓軸卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view6/M03/14/15/wKhkGWd6iZWADc66AAIGfD9jTAI0454.jpg)
![2025屆遼寧省盤錦市遼河油田一中高三壓軸卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view6/M03/14/15/wKhkGWd6iZWADc66AAIGfD9jTAI0455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆遼寧省盤錦市遼河油田一中高三壓軸卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.2.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.3.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.4.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多5.集合,,則()A. B. C. D.6.()A. B. C.1 D.7.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.已知三棱錐中,為的中點,平面,,,則有下列四個結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時,與平面所成的角的范圍為;④當(dāng)時,為平面內(nèi)一動點,若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.49.已知復(fù)數(shù)滿足,則=()A. B.C. D.10.隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標(biāo)天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個月D.6月份的空氣質(zhì)量最差.11.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點對稱;②函數(shù)是周期函數(shù);③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④12.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內(nèi)切圓方程是________.14.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.若隨機變量的分布列如表所示,則______,______.-10116.已知隨機變量服從正態(tài)分布,若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.18.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數(shù)的值;(2)設(shè)線段的中點為,其中為坐標(biāo)原點,若,求的面積.19.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.20.(12分)已知,其中.(1)當(dāng)時,設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.21.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.22.(10分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點到直線距離的最小值,這由數(shù)形結(jié)合思想易得.2、C【解析】令圓的半徑為1,則,故選C.3、A【解析】
先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.4、D【解析】
根據(jù)兩個圖形的數(shù)據(jù)進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.6、A【解析】
利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點睛】本題考查復(fù)數(shù)模長的計算,同時也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.7、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。8、C【解析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.9、B【解析】
利用復(fù)數(shù)的代數(shù)運算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.10、D【解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.11、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關(guān)于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當(dāng)時,,,,此時與無交點;當(dāng)時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學(xué)生的分析和推理能力有較高要求.12、D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用公式計算出,其中為的周長,為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標(biāo).【詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學(xué)生的運算能力,是一道中檔題.14、【解析】
將代入求解即可;當(dāng)為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15、【解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16、0.4【解析】
因為隨機變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態(tài)分布所以正態(tài)曲線關(guān)于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】
(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;
(2)首先通過求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設(shè),當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,,當(dāng)時,,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當(dāng)時,,故,證畢.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對問題進行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個數(shù)問題轉(zhuǎn)化為圖像的交點個數(shù),進而轉(zhuǎn)化為證明不等式的問題,屬難題.18、(1)的值為或.(2)【解析】
(1)分類討論,當(dāng)時,線段與拋物線沒有公共點,設(shè)點在拋物線準(zhǔn)線上的射影為,當(dāng)三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點,即時,設(shè)點在拋物線準(zhǔn)線上的射影為,則三點共線時,的最小值為,此時若線段與拋物線有公共點,即時,則三點共線時,的最小值為:,此時綜上,實數(shù)的值為或.因為,所以軸且設(shè),則,代入拋物線的方程解得于是,所以【點睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關(guān)系中的面積問題,屬于中檔題.19、(1)證明見詳解;(2)【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點存在定理可知有唯一零點,且.由此判斷出時,單調(diào)遞減,時,單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調(diào)遞增,且,有唯一零點,且,當(dāng)時,,,單調(diào)遞減;當(dāng)時,,,單調(diào)遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調(diào)遞增,.,∴實數(shù)的取值范圍為.【點睛】本題考查了函數(shù)的極值,利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構(gòu)造函數(shù),是解題的關(guān)鍵,屬于綜合性很強的難題.20、(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當(dāng)時,設(shè)函數(shù),則令,解得當(dāng)時,,當(dāng)時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時,函數(shù)取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時,在區(qū)間上恒成立,當(dāng)時,,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時,函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點睛】此題考查了參數(shù)的取值范圍以及恒成立的問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣東公務(wù)員考試行測試題
- 2024婚禮司儀主持詞開場白模版(33篇)
- 2024西安市房屋租賃合同范本(22篇)
- 2025年個人資產(chǎn)轉(zhuǎn)讓協(xié)議官方版
- 2025年代理出口合作協(xié)議范例
- 2025年農(nóng)村自用土地轉(zhuǎn)讓合同示例
- 2025年油污清潔劑項目立項申請報告模板
- 2025年公路清障車項目規(guī)劃申請報告模稿
- 2025年中國郵政快遞運輸合同標(biāo)準(zhǔn)
- 2025年快遞員職業(yè)技能培訓(xùn)與發(fā)展協(xié)議
- 幼兒園隊列隊形訓(xùn)練培訓(xùn)
- 《汽車電氣設(shè)備構(gòu)造與維修》 (第4版) 課件 第四章 發(fā)動機電器
- 部編版語文六年級下冊第五單元大單元教學(xué)設(shè)計核心素養(yǎng)目標(biāo)
- 智能環(huán)境設(shè)備的智能監(jiān)測與環(huán)境保護
- T-SDASTC 006-2023 眩暈病中西醫(yī)結(jié)合基層診療指南
- 魯濱遜漂流記荒島生活的冒險與探索人性的真實展現(xiàn)
- 2024年全國小學(xué)生英語競賽初賽(低年級組)試題及參考答案
- 醫(yī)院電梯引導(dǎo)服務(wù)方案
- 嶺南膏方規(guī)范
- 懷孕期間體重管理課件
- 2023黑龍江氣象局所屬事業(yè)單位招聘畢業(yè)生5名筆試參考題庫(共500題)答案詳解版
評論
0/150
提交評論