山西省陽(yáng)泉市2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁(yè)
山西省陽(yáng)泉市2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁(yè)
山西省陽(yáng)泉市2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁(yè)
山西省陽(yáng)泉市2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁(yè)
山西省陽(yáng)泉市2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省陽(yáng)泉市2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.2.如圖在一個(gè)的二面角的棱有兩個(gè)點(diǎn),線段分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于棱,且,則的長(zhǎng)為()A.4 B. C.2 D.3.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.4.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若雙曲線:繞其對(duì)稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或6.雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過(guò)點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.27.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.8.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動(dòng)點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.9.已知曲線,動(dòng)點(diǎn)在直線上,過(guò)點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長(zhǎng)為()A. B.2 C.4 D.10.等比數(shù)列若則()A.±6 B.6 C.-6 D.11.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]12.已知是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.14.已知各項(xiàng)均為正數(shù)的等比數(shù)列的前項(xiàng)積為,,(且),則__________.15.已知函數(shù)的圖象在處的切線斜率為,則______.16.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.18.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過(guò)焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過(guò)點(diǎn).(1)求的值及該圓的方程;(2)設(shè)為上任意一點(diǎn),過(guò)點(diǎn)作的切線,切點(diǎn)為,證明:.19.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.20.(12分)已知公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.22.(10分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過(guò)坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.2、A【解析】

由,兩邊平方后展開整理,即可求得,則的長(zhǎng)可求.【詳解】解:,,,,,,.,,故選:.【點(diǎn)睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于中檔題.3、C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.4、B【解析】

化簡(jiǎn)復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5、C【解析】

由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點(diǎn)既可在軸,又可在軸上,所以或,或.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.6、A【解析】

設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)椋詾榫€段的中點(diǎn),所以,,整理得,故該雙曲線的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、B【解析】

利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.8、B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對(duì)應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.9、C【解析】

設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過(guò)定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過(guò)點(diǎn),所以,即都在直線上,所以直線的方程為,恒過(guò)定點(diǎn),即直線過(guò)圓心,則直線截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.10、B【解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.11、D【解析】

由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】

根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,畫出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫?,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.14、【解析】

利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對(duì)數(shù)運(yùn)算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.15、【解析】

先對(duì)函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問(wèn)題,屬于基礎(chǔ)題.16、必要不充分【解析】

先求解直線l1與直線l2平行的等價(jià)條件,然后進(jìn)行判斷.【詳解】“直線l1:與直線l2:平行”等價(jià)于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點(diǎn)睛】本題主要考查充分必要條件的判定,把已知條件進(jìn)行等價(jià)轉(zhuǎn)化是求解這類問(wèn)題的關(guān)鍵,側(cè)重考查邏輯推理的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解析】

(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時(shí),,單調(diào)遞增;時(shí),令得,時(shí),,遞減,時(shí),,遞增,綜上所述,時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時(shí),,,從而只需時(shí),恒成立,即,令,,在上遞減,在上遞增,∴,從而.時(shí),,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個(gè)數(shù)與不等式恒成立問(wèn)題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問(wèn)題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過(guò)導(dǎo)數(shù)求解.18、(1),圓的方程為:.(2)答案見解析【解析】

(1)根據(jù)題意,可知點(diǎn)的坐標(biāo)為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡(jiǎn)解得,進(jìn)而求得點(diǎn)的坐標(biāo)為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點(diǎn)的坐標(biāo)為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點(diǎn)的坐標(biāo)為.所以,,.故.【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點(diǎn)坐標(biāo)以及向量的數(shù)量積,考查解題能力和計(jì)算能力.19、(1)見解析(2)【解析】

(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時(shí)點(diǎn)的位置.建立空間直角坐標(biāo)系,通過(guò)平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫嫫矫媸钦叫危云矫?因?yàn)槠矫?,所?因?yàn)辄c(diǎn)在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點(diǎn)位于的中點(diǎn)時(shí),的面積最大,三棱錐的體積也最大.不妨設(shè),記中點(diǎn)為,以為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)(2)【解析】

(1)判斷公比不為1,運(yùn)用等比數(shù)列的求和公式,解方程可得公比,進(jìn)而得到所求通項(xiàng)公式;(2)求得,運(yùn)用數(shù)列的錯(cuò)位相減法求和,以及等比數(shù)列的求和公式,計(jì)算可得所求和.【詳解】解:(1)設(shè)公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,,可得時(shí),,不成立;當(dāng)時(shí),,即,解得(舍去),則;(2),前項(xiàng)和,,兩式相減可得,化簡(jiǎn)可得.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,考查方程思想和運(yùn)算能力,屬于中檔題.21、(1)證明見解析;(2).【解析】

(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點(diǎn),在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點(diǎn)處的切線的方程①,再設(shè)直線與相切于點(diǎn),有,即,再求得在點(diǎn)處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點(diǎn),則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點(diǎn),且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點(diǎn),注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當(dāng)時(shí),為單調(diào)遞增函數(shù),且,從而在上無(wú)零點(diǎn);當(dāng)時(shí),要使得在上存在零點(diǎn),則只需,,因?yàn)闉閱握{(diào)遞增函數(shù),,所以;因?yàn)闉閱握{(diào)遞增函數(shù),且,因此;因?yàn)闉檎麛?shù),且,所以.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論