中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題03 動(dòng)點(diǎn)問(wèn)題中三角形、四邊形的存在性問(wèn)題(解析版)_第1頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題03 動(dòng)點(diǎn)問(wèn)題中三角形、四邊形的存在性問(wèn)題(解析版)_第2頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題03 動(dòng)點(diǎn)問(wèn)題中三角形、四邊形的存在性問(wèn)題(解析版)_第3頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題03 動(dòng)點(diǎn)問(wèn)題中三角形、四邊形的存在性問(wèn)題(解析版)_第4頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題03 動(dòng)點(diǎn)問(wèn)題中三角形、四邊形的存在性問(wèn)題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題03動(dòng)點(diǎn)問(wèn)題中三角形、四邊形的存在性問(wèn)題幾何動(dòng)態(tài)問(wèn)題包括幾何動(dòng)點(diǎn)問(wèn)題、幾何線動(dòng)問(wèn)題和面動(dòng)問(wèn)題,本專題重點(diǎn)探究動(dòng)點(diǎn)問(wèn)題,線動(dòng)和面動(dòng)問(wèn)題,將在圖形變換專題中進(jìn)行探究。幾何動(dòng)點(diǎn)問(wèn)題的考查面比較多,但總體看以考查點(diǎn)在幾何圖形中運(yùn)動(dòng)時(shí)產(chǎn)生的線段的數(shù)量關(guān)系和位置關(guān)系,角度關(guān)系以及三角形、四邊形的存在性居多。線段和角度問(wèn)題會(huì)在其他專題中進(jìn)行分析,在這里只討論三角形和四邊形的存在性問(wèn)題。在解決幾何動(dòng)點(diǎn)問(wèn)題中的三角形和四邊形存在性問(wèn)題時(shí),一般有以下幾種情況:1.等腰三角形存在性問(wèn)題:在解等腰三角形存在性問(wèn)題時(shí),通常設(shè)出由動(dòng)點(diǎn)的運(yùn)動(dòng)而處于不斷變化的線段的長(zhǎng)度為x,其次結(jié)合幾何圖形的性質(zhì)用x表達(dá)出三角形的各個(gè)邊長(zhǎng),利用等腰三角形的概念,有2條邊相等的三角形是等腰三角形,進(jìn)行分類討論,找出等量關(guān)系,列出方程求解,在解出方程后注意要進(jìn)行檢驗(yàn)。2.直角三角形存在性問(wèn)題:在解直角三角形存在性問(wèn)題時(shí),通常設(shè)出由動(dòng)點(diǎn)的運(yùn)動(dòng)而處于不斷變化的線段的長(zhǎng)度為x,其次結(jié)合幾何圖形的性質(zhì)用x表達(dá)出三角形的各個(gè)邊長(zhǎng),利用勾股定理的逆定理,同時(shí)進(jìn)行分類討論,找出等量關(guān)系,列出方程求解,在解出方程后注意要進(jìn)行檢驗(yàn)。3.全等三角形存在性問(wèn)題:在解全等三角形存在性問(wèn)題時(shí),通常設(shè)出由動(dòng)點(diǎn)的運(yùn)動(dòng)而處于不斷變化的線段的長(zhǎng)度為x,其次求出或者用x表示出已知三角形的各邊長(zhǎng),然后找出或者用x表示出動(dòng)態(tài)三角形的各邊長(zhǎng),最后利用全等三角形的判定定理,建立方程求解,在解出方程后注意要進(jìn)行檢驗(yàn)。4.相似三角形存在性問(wèn)題:在解相似三角形存在性問(wèn)題時(shí),通常設(shè)出由動(dòng)點(diǎn)的運(yùn)動(dòng)而產(chǎn)生的處于不斷變化的線段的長(zhǎng)度為x,其次求出或者用x表示出已知三角形的各邊長(zhǎng),然后找出或者用x表示出動(dòng)態(tài)三角形的各邊長(zhǎng),最后利用相似三角形的判定定理,建立方程求解,在解出方程后注意要進(jìn)行檢驗(yàn)。5.平行四邊形的存在性問(wèn)題:在解平行四邊形存在性問(wèn)題時(shí),通常設(shè)出由動(dòng)點(diǎn)的運(yùn)動(dòng)而產(chǎn)生的處于不斷變化的線段的長(zhǎng)度為x,其次求出或者用x表示出平行四邊形、矩形、菱形或正方形的其他各邊的長(zhǎng)度,最后利用平行四邊形、矩形、菱形或正方形的判定定理,建立方程求解,在解出方程后注意要進(jìn)行檢驗(yàn)。可見在解決此類問(wèn)題時(shí),關(guān)鍵是設(shè)出未知數(shù)x,并用x表示出各線段的長(zhǎng)度,利用各幾何圖形的判定,列出方程進(jìn)行求解,是此類題型的共性,但要注意,在解決此類問(wèn)題時(shí),要注意分類討論。 (2022·山東棗莊·統(tǒng)考中考真題)已知△ABC中,∠ACB=90°,AC=BC=4cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒SKIPIF1<0cm的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.(1)如圖①,若PQ⊥BC,求t的值;(2)如圖②,將△PQC沿BC翻折至△P′QC,當(dāng)t為何值時(shí),四邊形QPCP′為菱形?(1)根據(jù)勾股定理求出SKIPIF1<0,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.(2)作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,證明出SKIPIF1<0為直角三角形,進(jìn)一步得出SKIPIF1<0和SKIPIF1<0為等腰直角三角形,再證明四邊形SKIPIF1<0為矩形,利用勾股定理在SKIPIF1<0、SKIPIF1<0中,結(jié)合四邊形SKIPIF1<0為菱形,建立等式進(jìn)行求解.【答案】(1)當(dāng)t=2時(shí),PQ⊥BC(2)當(dāng)t的值為SKIPIF1<0時(shí),四邊形QPCP′為菱形【詳解】(1)解:(1)如圖①,∵∠ACB=90°,AC=BC=4cm,∴AB=SKIPIF1<0=SKIPIF1<0(cm),由題意得,AP=SKIPIF1<0tcm,BQ=tcm,則BP=(4SKIPIF1<0﹣SKIPIF1<0t)cm,∵PQ⊥BC,∴∠PQB=90°,∴∠PQB=∠ACB,∴PQSKIPIF1<0AC,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0,解得:t=2,∴當(dāng)t=2時(shí),PQ⊥BC.(2)解:作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為直角三角形,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0為等腰直角三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(舍去).SKIPIF1<0的值為SKIPIF1<0.此題是相似形綜合題,主要考查的是菱形的性質(zhì)、等腰直角三角形的性質(zhì),線段垂直平分線的性質(zhì),用方程的思想解決問(wèn)題是解本題的關(guān)鍵.(2021·廣西河池·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D,E分別是AB,BC邊上的動(dòng)點(diǎn),以BD為直徑的SKIPIF1<0交BC于點(diǎn)F.(1)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0;(2)當(dāng)SKIPIF1<0是等腰三角形且SKIPIF1<0是直角三角形時(shí),求AD的長(zhǎng).(1)根據(jù)BD是圓的直徑,可以得到∠BFD=90°,即∠DFC=90°,然后利用“HL”證明△CAD≌△CFD即可;(2)因?yàn)槿切蜟ED為等腰三角形,故每一條邊都可能是底邊,可以分三類討論,由于三角形DEB是直角三角形,所以D和F都可以為直角的頂點(diǎn),需要分兩類討論;當(dāng)∠EDB=90°時(shí),∠DEB<90°,∠CED是鈍角,所以此時(shí)只能構(gòu)造EC=ED的等腰三角形,故取D點(diǎn)使CD平分∠ACB,作DE⊥AB交BC于E,可以證明DE=DC,且DE∥DC,得到△BDE∽△BAC即可求解;當(dāng)∠AED=90°時(shí),若三角形CED為等腰三角形,則∠ECD=∠EDC=45°,即EC=DE,利用三角函數(shù)或相似即可求出AD.【答案】(1)證明見解析;(2)SKIPIF1<0或SKIPIF1<0【詳解】解:(1)∵BD是圓的直徑,∴∠DFB=90°,∴∠DFC=90°,在Rt△CAD和Rt△FCD中,SKIPIF1<0,∴△CAD≌△CFD(HL);(2)∵三角形DEB是直角三角形,且∠B<90°,∴直角頂點(diǎn)只能是D點(diǎn)和E點(diǎn),若∠EDB=90°,如圖在AB上取D點(diǎn)使CD平分∠ACB,作DE⊥AB交BC于E,∵CD平分∠ACB,∴∠ACD=∠ECD,∵∠CAB=∠EDB=90°,∴AC∥DE,∴∠ACD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,此時(shí)三角形ECD為E為頂角頂點(diǎn)的等腰三角形,三角形DEB是E為直角頂點(diǎn)的直角三角形,設(shè)CE=DE=x,在直角三角形ABC中SKIPIF1<0,∴BE=5-x,∵DE∥AC,∴△BDE∽△BAC,∴SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∵DE∥AC,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;若∠DEB=90°,如圖所示,∠CED=90°,∵△CED為等腰三角形,∴∠ECD=∠EDC=45°,即EC=DC,設(shè)EC=DC=y,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴AD的長(zhǎng)為SKIPIF1<0或SKIPIF1<0.本題主要考查了全等三角形的性質(zhì)與判定,相似三角形的性質(zhì)與判定,三角函數(shù),解題的關(guān)鍵在于能夠利用數(shù)形結(jié)合的思想進(jìn)行分類討論求解.1.(2022·上海松江·??既#┤鐖DSKIPIF1<0,在梯形SKIPIF1<0中,SKIPIF1<0動(dòng)點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,與邊SKIPIF1<0交于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,與邊SKIPIF1<0交于點(diǎn)SKIPIF1<0,設(shè)線段SKIPIF1<0.(1)求SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)解析式,并寫出定義域;(2)當(dāng)SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形時(shí),求SKIPIF1<0的值;(3)如圖SKIPIF1<0,作SKIPIF1<0的外接圓SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在運(yùn)動(dòng)過(guò)程中,外接圓SKIPIF1<0的圓心SKIPIF1<0落在SKIPIF1<0的內(nèi)部不包括邊上時(shí),求出SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0【分析】(1)由題中條件SKIPIF1<0、SKIPIF1<0可知四邊形SKIPIF1<0是平行四邊形,故CESKIPIF1<0;過(guò)點(diǎn)SKIPIF1<0作垂線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,可得相似的SKIPIF1<0和SKIPIF1<0,用含SKIPIF1<0、SKIPIF1<0的表達(dá)式表示它們的邊長(zhǎng),再根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求得SKIPIF1<0關(guān)于SKIPIF1<0的解析式;下一步即為求得SKIPIF1<0和SKIPIF1<0的各自邊長(zhǎng),過(guò)點(diǎn)SKIPIF1<0作垂線SKIPIF1<0交SKIPIF1<0延長(zhǎng)線于點(diǎn)SKIPIF1<0,由SKIPIF1<0且SKIPIF1<0可得四邊形SKIPIF1<0為矩形,則SKIPIF1<0;在SKIPIF1<0中,由勾股定理可算得SKIPIF1<0的長(zhǎng)度;在SKIPIF1<0中,SKIPIF1<0,則可由勾股定理求得SKIPIF1<0的長(zhǎng)度,SKIPIF1<0,至此已求得所有所需邊長(zhǎng),根據(jù)相似三角形邊長(zhǎng)比例關(guān)系:SKIPIF1<0,代入各邊長(zhǎng)表達(dá)式即可得SKIPIF1<0關(guān)于SKIPIF1<0的解析式,再根據(jù)題中要求寫出定義域即可;(2)因?yàn)镾KIPIF1<0是以SKIPIF1<0為腰的等腰三角形,SKIPIF1<0,由勾股定理知SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則四邊形SKIPIF1<0是矩形,SKIPIF1<0;在直角三角形SKIPIF1<0中,運(yùn)用勾股定理進(jìn)行計(jì)算即可得解;(3)根據(jù)三角形的外接圓圓心落在三角形的內(nèi)部,得到SKIPIF1<0為銳角三角形,分析SKIPIF1<0點(diǎn)運(yùn)動(dòng)過(guò)程可知,SKIPIF1<0隨SKIPIF1<0點(diǎn)向右運(yùn)動(dòng)角度不斷減小,且SKIPIF1<0和SKIPIF1<0始終是銳角.根據(jù)題意,令點(diǎn)SKIPIF1<0的位置滿足SKIPIF1<0,則SKIPIF1<0大于此時(shí)對(duì)應(yīng)的長(zhǎng)度就可使得外接圓圓SKIPIF1<0的圓心SKIPIF1<0落在SKIPIF1<0的內(nèi)部.【詳解】(1)解:如圖所示:過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0延長(zhǎng)線于點(diǎn)SKIPIF1<0,再過(guò)點(diǎn)SKIPIF1<0作垂線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,SKIPIF1<0點(diǎn)在SKIPIF1<0上運(yùn)動(dòng),故定義域?yàn)椋篠KIPIF1<0;(2)如圖所示,此時(shí)SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,又SKIPIF1<0是以SKIPIF1<0為腰的等腰三角形,SKIPIF1<0,由(SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0,因此,SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0;(3)解:分析SKIPIF1<0點(diǎn)運(yùn)動(dòng)過(guò)程可知,SKIPIF1<0隨SKIPIF1<0點(diǎn)向右運(yùn)動(dòng)角度不斷減小,且SKIPIF1<0和SKIPIF1<0始終是銳角.根據(jù)題意,令點(diǎn)SKIPIF1<0的位置滿足SKIPIF1<0,則SKIPIF1<0大于此時(shí)對(duì)應(yīng)的長(zhǎng)度就可使得外接圓圓SKIPIF1<0的圓心SKIPIF1<0落在SKIPIF1<0的內(nèi)部.如下圖所示,此時(shí)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0同角的余角相等SKIPIF1<0,同理可得:SKIPIF1<0,SKIPIF1<0∽SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,綜上可得,當(dāng)SKIPIF1<0時(shí),外接圓圓SKIPIF1<0的圓心SKIPIF1<0落在SKIPIF1<0的內(nèi)部.2.(2022·廣東揭陽(yáng)·校考三模)如圖1,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,E是SKIPIF1<0邊上一點(diǎn),連接SKIPIF1<0,將矩形SKIPIF1<0沿SKIPIF1<0折疊,頂點(diǎn)D恰好落在SKIPIF1<0邊上點(diǎn)F處,延長(zhǎng)SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于點(diǎn)G.(1)求線段SKIPIF1<0的長(zhǎng);(2)如圖2,M,N分別是線段SKIPIF1<0上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且SKIPIF1<0,設(shè)SKIPIF1<0.①求證四邊形AFGD為菱形;②是否存在這樣的點(diǎn)N,使SKIPIF1<0是直角三角形?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)3;(2)①見解析;②SKIPIF1<0或2【分析】(1)由翻折可知:SKIPIF1<0.SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.在SKIPIF1<0中,利用勾股定理構(gòu)建方程即可解決問(wèn)題.(2)①由SKIPIF1<0計(jì)算出SKIPIF1<0的長(zhǎng)度,再證明四邊形SKIPIF1<0是平行四邊形,根據(jù)一組鄰邊相等的平行四邊形的菱形即可證明;②若SKIPIF1<0是直角三角形,則有兩種情況,一是當(dāng)SKIPIF1<0時(shí),二是當(dāng)SKIPIF1<0時(shí),分別利用相似三角形的性質(zhì)以及銳角三角函數(shù)的定義即可計(jì)算得出.【詳解】(1)解:∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴SKIPIF1<0,由翻折可知:SKIPIF1<0.SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,則有:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)①證明:∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由(1)可得:SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,又∵SKIPIF1<0,∴平行四邊形SKIPIF1<0是菱形.②∵SKIPIF1<0,∴若SKIPIF1<0是直角三角形,則有兩種情況,當(dāng)SKIPIF1<0時(shí),∵SKIPIF1<0,∴SKIPIF1<0又∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵sSKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0解得:SKIPIF1<0,綜上所述:SKIPIF1<0或2.3.(2022·浙江麗水·一模)在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E在SKIPIF1<0邊上,SKIPIF1<0,點(diǎn)P是邊SKIPIF1<0上一個(gè)動(dòng)點(diǎn),連結(jié)SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0翻折得到SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的度數(shù);(2)若點(diǎn)F落在對(duì)角線SKIPIF1<0上,求證:SKIPIF1<0;(3)若點(diǎn)P在射線SKIPIF1<0上運(yùn)動(dòng),設(shè)直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)H,問(wèn)當(dāng)SKIPIF1<0為何值時(shí),SKIPIF1<0為直角三角形.【答案】(1)60°;(2)見解析;(3)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【分析】(1)由平行線的性質(zhì)得SKIPIF1<0,求得SKIPIF1<0,由翻折的性質(zhì)可得SKIPIF1<0,即可求解;(2)易證SKIPIF1<0是等邊三角形,由翻折可得SKIPIF1<0,證得SKIPIF1<0,即可證明相似;(3)如圖2,當(dāng)點(diǎn)P在線段AB上,∠PHB=90°,延長(zhǎng)EF交AB的延長(zhǎng)線于點(diǎn)K,由翻折的性質(zhì)可得:AP=FP,SKIPIF1<0,SKIPIF1<0,設(shè)AP=x,則FP=x,求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,求解即可得SKIPIF1<0;如圖3,當(dāng)點(diǎn)P在線段AB上,∠HPB=90°,過(guò)點(diǎn)E作EQ⊥AB于點(diǎn)Q,由折疊的性質(zhì)可得:SKIPIF1<0,求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可得AP的長(zhǎng)度;如圖4,當(dāng)點(diǎn)P在BA的延長(zhǎng)線上,∠HPB=90°,過(guò)點(diǎn)E作EM⊥AB于點(diǎn)M,設(shè)AP=a,易得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,求解即可;如圖5,當(dāng)點(diǎn)P在BA延長(zhǎng)線上,∠PHB=90°,延長(zhǎng)EF交AB于點(diǎn)N,由翻折的性質(zhì)可得:AP=FP,SKIPIF1<0,SKIPIF1<0,證得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可求得AP的長(zhǎng)度.【詳解】(1)解:∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0是由SKIPIF1<0翻折得到,∴SKIPIF1<0,∴SKIPIF1<0;(2)證明:當(dāng)點(diǎn)F在BD上時(shí),如圖1所示,∵菱形ABCD中,SKIPIF1<0,∴AD=AB,SKIPIF1<0是等邊三角形,∴SKIPIF1<0∵SKIPIF1<0是由SKIPIF1<0翻折得到,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0;(3)解:如圖2,當(dāng)點(diǎn)P在線段AB上,∠PHB=90°,延長(zhǎng)EF交AB的延長(zhǎng)線于點(diǎn)K,由翻折的性質(zhì)可得:AP=FP,SKIPIF1<0,SKIPIF1<0設(shè)AP=x,則FP=x,∵∠PHB=90°,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0;如圖3,當(dāng)點(diǎn)P在線段AB上,∠HPB=90°,過(guò)點(diǎn)E作EQ⊥AB于點(diǎn)Q,由折疊的性質(zhì)可得:SKIPIF1<0,∵EQ⊥AB,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;如圖4,當(dāng)點(diǎn)P在BA的延長(zhǎng)線上,∠HPB=90°,過(guò)點(diǎn)E作EM⊥AB于點(diǎn)M,設(shè)AP=a,∵EM⊥AB,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0由折疊的性質(zhì)可得:SKIPIF1<0,∵EM⊥AB,SKIPIF1<0∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0;如圖5,當(dāng)點(diǎn)P在BA延長(zhǎng)線上,∠PHB=90°,延長(zhǎng)EF交AB于點(diǎn)N,由翻折的性質(zhì)可得:AP=FP,SKIPIF1<0,SKIPIF1<0∵∠PHB=90°,∠PBH=60°,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.綜上,AP的長(zhǎng)度為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.4.(2022·浙江麗水·統(tǒng)考一模)如圖,在菱形SKIPIF1<0中,點(diǎn)P為對(duì)角線SKIPIF1<0上的動(dòng)點(diǎn),連接SKIPIF1<0,將SKIPIF1<0繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn)至SKIPIF1<0,使SKIPIF1<0與SKIPIF1<0交于點(diǎn)E.(1)求證:SKIPIF1<0;(2)已知SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的面積;②連接SKIPIF1<0,當(dāng)SKIPIF1<0為直角三角形時(shí),求SKIPIF1<0的長(zhǎng).【答案】(1)見解析;(2)①SKIPIF1<0;②SKIPIF1<0的值等于4或SKIPIF1<0【分析】(1)SKIPIF1<0與SKIPIF1<0為兩個(gè)等腰三角形,得到SKIPIF1<0,從而推算出SKIPIF1<0從而證明SKIPIF1<0;(2)①根據(jù)勾股定理算出DO,證明SKIPIF1<0,根據(jù)相似比分別求出DP、AP,計(jì)算出SKIPIF1<0面積,再利用三角形的相似比計(jì)算出SKIPIF1<0的面;

②當(dāng)SKIPIF1<0時(shí),證明SKIPIF1<0得出AP=CP計(jì)算出AP;當(dāng)SKIPIF1<0證明SKIPIF1<0,根據(jù)相似比計(jì)算出AP.【詳解】(1)證明:在菱形SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0(2)解:如圖2,連接SKIPIF1<0在菱形SKIPIF1<0中,SKIPIF1<0與SKIPIF1<0互相垂直平分,得SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0得SKIPIF1<0∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0②如下圖所示,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.如下圖所示,當(dāng)SKIPIF1<0時(shí),延長(zhǎng)SKIPIF1<0交SKIPIF1<0于H,設(shè)SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0解得SKIPIF1<0∵SKIPIF1<0當(dāng)SKIPIF1<0時(shí)SKIPIF1<0∴SKIPIF1<0的情況不存在綜上所述,SKIPIF1<0的值等于4或SKIPIF1<0.5.(2022·寧夏吳忠·統(tǒng)考二模)如圖,在四邊形ABCD中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),在線段AD上以每秒1cm的速度向點(diǎn)D運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C出發(fā),在線段CB上以每秒2cm的速度運(yùn)動(dòng)向點(diǎn)B運(yùn)動(dòng),點(diǎn)E、F分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).(1)用含t的代數(shù)式表示DE,SKIPIF1<0______;(2)若四邊形EFCD是平行四邊形,求此時(shí)t的值;(3)是否存在點(diǎn)F,使△FCD是等腰三角形?若存在,請(qǐng)直接寫出所有滿足要求的t的值;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0;(2)5;(3)存在,SKIPIF1<0或5或SKIPIF1<0【分析】(1)由題意得的SKIPIF1<0cm,即可得出結(jié)論.(2)由平行四邊形的性質(zhì)得SKIPIF1<0,再分兩種情況,當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),分別求解即可.(3)過(guò)D作SKIPIF1<0于G,則四邊形ABGD是矩形,得SKIPIF1<0,SKIPIF1<0,再由勾股定理求出SKIPIF1<0,然后分情況討論:①SKIPIF1<0②SKIPIF1<0,③SKIPIF1<0,由等腰三角形的性質(zhì)和勾股定理分別求解即可.【詳解】(1)解:經(jīng)過(guò)ts后SKIPIF1<0cm,SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,解得:SKIPIF1<0;∵SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí)四邊形EFCD是平行四邊形.(3)存在點(diǎn)F,使△FCD是等腰三角形,理由如下:過(guò)D作SKIPIF1<0于G,則四邊形ABGD是矩形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在Rt△CDG中,由勾股定理得:SKIPIF1<0分情況討論:①SKIPIF1<0,如圖1,則SKIPIF1<0,解得:SKIPIF1<0;②SKIPIF1<0,如圖2,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;③SKIPIF1<0,如圖3,在RT△FDG中,由勾股定理得:∵SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,綜上所述,存在點(diǎn)F,使△FCD是等腰三角形,t的值為SKIPIF1<0或5或SKIPIF1<0.6.(2022·浙江金華·校聯(lián)考三模)在四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)如圖1,①求證:SKIPIF1<0;②求SKIPIF1<0的正切值;(2)如圖2,動(dòng)點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),以1個(gè)單位每秒速度,沿折線SKIPIF1<0運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),以2個(gè)單位每秒速度,沿射線SKIPIF1<0運(yùn)動(dòng),當(dāng)點(diǎn)SKIPIF1<0到達(dá)點(diǎn)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0,SKIPIF1<0同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0秒,以SKIPIF1<0為斜邊作SKIPIF1<0,使點(diǎn)SKIPIF1<0落在線段SKIPIF1<0或SKIPIF1<0上,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)不再連接其他線段,且圖中存在與SKIPIF1<0相似的三角形時(shí),求SKIPIF1<0的值.【答案】(1)①見解析;②SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)①連接AC,根據(jù)“SSS”證明SKIPIF1<0,即可得出結(jié)論;②過(guò)點(diǎn)A作SKIPIF1<0,交CD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,先證明四邊形SKIPIF1<0為矩形,得出SKIPIF1<0,∠AEF=90°,再根據(jù)“ASA”證明SKIPIF1<0,得出SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,根據(jù)勾股定理列出關(guān)于x的方程,解方程得出x的值,即可得出結(jié)果;(2)按照點(diǎn)M、N、P的位置,SKIPIF1<0或SKIPIF1<0,以及當(dāng)三角形全等也是特殊的相似,進(jìn)行分類討論,求出t的值即可.【詳解】(1)證明:①連接AC,如圖所示:∵在△ABC和△ADC中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;②過(guò)點(diǎn)A作SKIPIF1<0,交CD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,如圖所示:SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∵∠EFC=90°,∴四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,∠AEF=90°,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0當(dāng)點(diǎn)M在AD上,SKIPIF1<0時(shí),過(guò)點(diǎn)M作SKIPIF1<0交CD于點(diǎn)E,延長(zhǎng)BA,交EM于點(diǎn)G,如圖所示:∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴四邊形BNMG為矩形,同理可得四邊形GBFE為矩形,∴GM=BN=2t,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論