四川省內(nèi)江市2025屆高三壓軸卷數(shù)學(xué)試卷含解析_第1頁
四川省內(nèi)江市2025屆高三壓軸卷數(shù)學(xué)試卷含解析_第2頁
四川省內(nèi)江市2025屆高三壓軸卷數(shù)學(xué)試卷含解析_第3頁
四川省內(nèi)江市2025屆高三壓軸卷數(shù)學(xué)試卷含解析_第4頁
四川省內(nèi)江市2025屆高三壓軸卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省內(nèi)江市2025屆高三壓軸卷數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.2.已知函數(shù),當(dāng)時(shí),恒成立,則的取值范圍為()A. B. C. D.3.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16004.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.16.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)7.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.88.若,,,則()A. B.C. D.9.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變10.已知是虛數(shù)單位,則()A. B. C. D.11.已知,,,若,則()A. B. C. D.12.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.14.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________15.已知正實(shí)數(shù)滿足,則的最小值為.16.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實(shí)踐體驗(yàn)活動(dòng).已知某種盆栽植物每株成活的概率為,各株是否成活相互獨(dú)立.該學(xué)校的某班隨機(jī)領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個(gè)二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級濾芯每個(gè)160元,二級濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個(gè)400元,二級濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個(gè)一級過濾器更換濾芯的頻率代替1個(gè)一級過濾器更換濾芯發(fā)生的概率,以200個(gè)二級過濾器更換濾芯的頻率代替1個(gè)二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級濾芯和二級濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.18.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.19.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值.20.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)如圖,三棱柱中,側(cè)面是菱形,其對角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.22.(10分)已知橢圓的左右焦點(diǎn)分別是,點(diǎn)在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線與的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),與直線交于點(diǎn)(介于兩點(diǎn)之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請說理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題2、A【解析】

分析可得,顯然在上恒成立,只需討論時(shí)的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價(jià)于,進(jìn)而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當(dāng)時(shí),等價(jià)于,因?yàn)?所以.設(shè),由,顯然在上單調(diào)遞增,因?yàn)?所以等價(jià)于,即,則.設(shè),則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點(diǎn)睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學(xué)生的推理能力,屬于基礎(chǔ)題.3、B【解析】

由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.4、B【解析】

根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【詳解】因?yàn)?,均為非零的平面向量,存在?fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時(shí),滿足,但此時(shí),不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.【點(diǎn)睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時(shí)注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.5、B【解析】

先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.6、D【解析】

求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.7、B【解析】

求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點(diǎn)求出即可.【詳解】因?yàn)?,所以,故,解得,又切線過點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.8、C【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來比較,考查推理能力,屬于基礎(chǔ)題.9、D【解析】

由函數(shù)的圖象關(guān)于直線對稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個(gè)單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題10、B【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.11、B【解析】

由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.12、A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無數(shù)多個(gè)交點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線處在過和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】

由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對稱,結(jié)合函數(shù)的對稱性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對稱,,函數(shù)關(guān)于點(diǎn)對稱,所以兩個(gè)函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對稱,.故答案為:18【點(diǎn)睛】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.14、【解析】

,可得在時(shí),最小值為,時(shí),要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.15、4【解析】

由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可知:的最小值為4.【點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.16、【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點(diǎn)睛】本題考查二項(xiàng)分布的實(shí)際應(yīng)用,考查分析問題解決問題的能力,考查計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個(gè)二級過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級過濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用(單位:元)因?yàn)?,且?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買一級濾芯和二級濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購買的各級濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.18、(1)(2)證明見解析【解析】

(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅當(dāng),時(shí)取等號(hào)).所以成立,故成立.【點(diǎn)睛】本題考查分類討論法解絕對值不等式,基本不等式的應(yīng)用,屬于中檔題.19、(1)見解析;(2).【解析】

(1)取的中點(diǎn),連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值,進(jìn)而可求得其正弦值.【詳解】(1)取中點(diǎn),連接、、,且,四邊形為平行四邊形,且,、分別為、中點(diǎn),且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,,設(shè)平面的法向量為,由,得,取,則,,,設(shè)平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.20、(1)見證明;(2)【解析】

(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論