版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市西城區(qū)北京第四十四中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于軸對(duì)稱;③若在上恰有7個(gè)零點(diǎn),則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為()A.1 B.2 C.3 D.42.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),則實(shí)數(shù)的取值范圍是()A. B. C. D.3.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個(gè)周期C.的圖像關(guān)于對(duì)稱 D.函數(shù)的零點(diǎn)有無(wú)窮多個(gè)4.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.635.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)7.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個(gè)小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側(cè)面積為8.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.10.在中,,,,若,則實(shí)數(shù)()A. B. C. D.11.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請(qǐng)問(wèn)第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里12.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.8二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中含的系數(shù)為_(kāi)_________.(用數(shù)字填寫答案)14.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.15.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為_(kāi)_______16.若實(shí)數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標(biāo)函數(shù)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.18.(12分)已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn),,如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時(shí),又稱存在“中值跟隨切線”.試問(wèn):函數(shù)上是否存在兩點(diǎn)使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說(shuō)明理由.19.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.20.(12分)在中,角A,B,C的對(duì)邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長(zhǎng)為8,求b.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.22.(10分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過(guò)焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過(guò)點(diǎn).(1)求的值及該圓的方程;(2)設(shè)為上任意一點(diǎn),過(guò)點(diǎn)作的切線,切點(diǎn)為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
對(duì)函數(shù)化簡(jiǎn)可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)椋灾芷?對(duì)于①,因?yàn)椋?,即,故①錯(cuò)誤;對(duì)于②,函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱,則,解得,故對(duì)任意整數(shù),,所以②錯(cuò)誤;對(duì)于③,令,可得,則,因?yàn)?,所以在上?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故③正確;對(duì)于④,因?yàn)?,且,所以,解得,又,所以,故④正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.2、B【解析】
考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又,當(dāng)時(shí),,故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),,故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說(shuō)明零點(diǎn)的存在性,本題屬于難題.3、D【解析】
運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無(wú)窮多個(gè);因?yàn)?,,令,則,即,所以的圖象關(guān)于對(duì)稱,由題意無(wú)法求出的值域,所以本題答案為D.【點(diǎn)睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.4、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.5、C【解析】
由余弦函數(shù)的單調(diào)性找出的等價(jià)條件為,再利用大角對(duì)大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題考查充分必要條件的判定,同時(shí)也考查了余弦函數(shù)的單調(diào)性、大角對(duì)大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.6、A【解析】試題分析:,,所以,即集合中共有3個(gè)元素,故選A.考點(diǎn):集合的運(yùn)算.7、C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計(jì)算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點(diǎn),底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.【點(diǎn)睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計(jì)算問(wèn)題,屬于中檔題.8、A【解析】
化簡(jiǎn)復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對(duì)應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過(guò)循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問(wèn)題,是求和還是求項(xiàng).10、D【解析】
將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.11、B【解析】
人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.12、A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐模?,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得,二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,則,所以得系數(shù)為.14、【解析】
先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解.【詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,,故答案為:,.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、0.35【解析】
根據(jù)對(duì)立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來(lái).【詳解】解:由題意知本題是一個(gè)對(duì)立事件的概率,抽到的不是一等品的對(duì)立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點(diǎn)睛】本題考查了求互斥事件與對(duì)立事件的概率的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.16、12【解析】
畫出約束條件的可行域,求出最優(yōu)解,即可求解目標(biāo)函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標(biāo)函數(shù)y=3x-z,當(dāng)y=3x-z過(guò)點(diǎn)(4,0)時(shí),z有最大值,且最大值為12.故答案為:12.【點(diǎn)睛】本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間(2)證明見(jiàn)解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡(jiǎn)為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域?yàn)椋瑒t,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)?,即證,令,則,令,則,當(dāng)時(shí),,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),,令,,,可知對(duì)于恒成立,即,即,故,即證,故原不等式得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問(wèn)題,屬于中檔題.18、(1),單調(diào)性見(jiàn)解析;(2)不存在,理由見(jiàn)解析【解析】
(1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設(shè)滿足條件的、存在,不妨設(shè),且,由題意得可得,令(),構(gòu)造函數(shù)(),求導(dǎo)后證明即可得解.【詳解】(1)由題可得函數(shù)的定義域?yàn)榍?,由,整理?.(?。┊?dāng)時(shí),易知,,時(shí).故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當(dāng)時(shí),令,解得或,則①當(dāng),即時(shí),在上恒成立,則在上遞增.②當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當(dāng)時(shí),在上單調(diào)遞增,在單調(diào)遞減.當(dāng)時(shí),在及上單調(diào)遞增;在上單調(diào)遞減.當(dāng)時(shí),在上遞增.當(dāng)時(shí),在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設(shè)滿足條件的、存在,不妨設(shè),且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無(wú)解,即無(wú)解.綜上,滿足條件的A、B不存在.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.19、(1)(2)見(jiàn)解析(3)存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè)【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項(xiàng)公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來(lái)算出的首項(xiàng)和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因?yàn)?,,所以,解?所以數(shù)列的通項(xiàng)公式為:.(2)由(1)得,當(dāng),時(shí),可得①,②②①得,,則有,即,,.因?yàn)?,由①得,,所以,所以?所以數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項(xiàng),使得對(duì)任意,都有,即對(duì)任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當(dāng),時(shí),,這與矛盾.(ii)若,則當(dāng),時(shí),.而,,所以.故,這與矛盾.所以.其次證明:當(dāng)時(shí),.因?yàn)?,所以在上單調(diào)遞增,所以,當(dāng)時(shí),.所以當(dāng),時(shí),.再次證明.(iii)若時(shí),則當(dāng),,,,這與③矛盾.(iv)若時(shí),同(i)可得矛盾.所以.當(dāng)時(shí),因?yàn)?,,所以?duì)任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè).【點(diǎn)睛】本題考查求等比數(shù)列通項(xiàng)公式,證明等差數(shù)列,以及數(shù)列中的探索性問(wèn)題,是一道數(shù)列綜合題,考查學(xué)生的分析,推理能力.20、(1);(2)【解析】
(1)通過(guò)正弦定理和內(nèi)角和定理化簡(jiǎn),再通過(guò)二倍角公式即可求出;(2)通過(guò)三角形面積公式和三角形的周長(zhǎng)為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《寡頭壟斷市場(chǎng)》課件
- 2024年滬教版必修2語(yǔ)文上冊(cè)階段測(cè)試試卷含答案
- 新建別墅居住權(quán)分割協(xié)議書
- 2024年華東師大版九年級(jí)化學(xué)上冊(cè)階段測(cè)試試卷含答案
- 企業(yè)成本控制優(yōu)化內(nèi)控辦法
- 2025年浙教版八年級(jí)生物上冊(cè)階段測(cè)試試卷含答案
- 2025年滬科版四年級(jí)數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案
- 2024年華東師大版二年級(jí)英語(yǔ)下冊(cè)階段測(cè)試試卷
- 2024年滬教版必修3生物上冊(cè)階段測(cè)試試卷含答案
- 廣電傳輸翻斗車租賃協(xié)議
- 2024-2030年全球與中國(guó)汽車音頻DSP芯片組市場(chǎng)銷售前景及競(jìng)爭(zhēng)策略分析報(bào)告
- 2025禮品定制合同范本
- 醫(yī)院消毒隔離制度范文(2篇)
- 2024年01月11026經(jīng)濟(jì)學(xué)(本)期末試題答案
- 烘干煤泥合同范例
- 人教版六年級(jí)上冊(cè)數(shù)學(xué)第八單元數(shù)學(xué)廣角數(shù)與形單元試題含答案
- 2025年“三基”培訓(xùn)計(jì)劃
- 第20課 北洋軍閥統(tǒng)治時(shí)期的政治、經(jīng)濟(jì)與文化 教案
- 住房公積金稽核審計(jì)工作方案例文(4篇)
- Unit 2 My Schoolbag ALets talk(說(shuō)課稿)-2024-2025學(xué)年人教PEP版英語(yǔ)四年級(jí)上冊(cè)
- 山東省青島實(shí)驗(yàn)高中2025屆高三物理第一學(xué)期期末綜合測(cè)試試題含解析
評(píng)論
0/150
提交評(píng)論