安徽醫(yī)科大學(xué)《大數(shù)據(jù)原理與應(yīng)用實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
安徽醫(yī)科大學(xué)《大數(shù)據(jù)原理與應(yīng)用實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
安徽醫(yī)科大學(xué)《大數(shù)據(jù)原理與應(yīng)用實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
安徽醫(yī)科大學(xué)《大數(shù)據(jù)原理與應(yīng)用實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁安徽醫(yī)科大學(xué)《大數(shù)據(jù)原理與應(yīng)用實(shí)踐》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在大數(shù)據(jù)分析中,常常需要處理缺失值。假設(shè)有一個(gè)數(shù)據(jù)集,其中某些特征存在大量的缺失值。以下哪種處理缺失值的方法可能會(huì)引入較大的偏差?()A.用平均值填充B.用中位數(shù)填充C.用眾數(shù)填充D.直接刪除包含缺失值的記錄2、當(dāng)使用大數(shù)據(jù)技術(shù)進(jìn)行用戶畫像構(gòu)建時(shí),需要整合多個(gè)數(shù)據(jù)源的信息。以下哪種數(shù)據(jù)源對(duì)于了解用戶的興趣愛好最為關(guān)鍵?()A.用戶的瀏覽歷史B.用戶的地理位置C.用戶的社交關(guān)系D.用戶的設(shè)備信息3、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),考慮到系統(tǒng)的可擴(kuò)展性和容錯(cuò)性,以下哪種分布式計(jì)算框架通常是首選?()A.MapReduceB.MPIC.StormD.TensorFlow4、當(dāng)分析大數(shù)據(jù)中的時(shí)空數(shù)據(jù),例如車輛的移動(dòng)軌跡,以下哪種技術(shù)或工具能夠提供有效的支持?()A.地理信息系統(tǒng)B.數(shù)據(jù)挖掘工具C.機(jī)器學(xué)習(xí)框架D.數(shù)據(jù)倉庫5、在大數(shù)據(jù)的分布式存儲(chǔ)系統(tǒng)中,副本機(jī)制用于提高數(shù)據(jù)的可靠性。假設(shè)一個(gè)數(shù)據(jù)塊有三個(gè)副本存儲(chǔ)在不同的節(jié)點(diǎn)上,當(dāng)其中一個(gè)副本損壞時(shí),系統(tǒng)會(huì)如何處理?()A.立即從其他副本中恢復(fù)損壞的副本B.等待管理員手動(dòng)修復(fù)損壞的副本C.忽略損壞的副本,繼續(xù)正常運(yùn)行D.停止系統(tǒng)運(yùn)行,直到副本修復(fù)完成6、在大數(shù)據(jù)的預(yù)測分析中,時(shí)間序列預(yù)測是常見的任務(wù)之一。假設(shè)我們有一個(gè)股票價(jià)格的時(shí)間序列數(shù)據(jù),需要預(yù)測未來的價(jià)格走勢(shì)。以下哪種方法常用于時(shí)間序列預(yù)測?()A.線性回歸B.決策樹C.移動(dòng)平均法D.隨機(jī)森林7、假設(shè)要對(duì)一個(gè)包含數(shù)十億條記錄的數(shù)據(jù)集進(jìn)行快速的排序和檢索操作,以下哪種數(shù)據(jù)結(jié)構(gòu)或算法可能會(huì)發(fā)揮最佳效果?()A.二叉搜索樹B.冒泡排序C.哈希表D.快速排序8、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)壓縮技術(shù)可以節(jié)省存儲(chǔ)空間和提高傳輸效率。以下關(guān)于無損壓縮和有損壓縮的比較,哪一項(xiàng)是錯(cuò)誤的?()A.無損壓縮能夠完全還原原始數(shù)據(jù),有損壓縮不能B.有損壓縮的壓縮比通常比無損壓縮高C.圖像和音頻數(shù)據(jù)通常適合有損壓縮,文本數(shù)據(jù)適合無損壓縮D.無損壓縮的算法復(fù)雜度通常比有損壓縮低9、在電商領(lǐng)域,大數(shù)據(jù)可以用于精準(zhǔn)營銷。以下關(guān)于大數(shù)據(jù)在電商精準(zhǔn)營銷中的作用,哪一個(gè)是不準(zhǔn)確的?()A.可以根據(jù)用戶的瀏覽和購買歷史為其推薦相關(guān)商品B.能夠分析市場趨勢(shì),幫助商家提前準(zhǔn)備庫存C.大數(shù)據(jù)精準(zhǔn)營銷只能針對(duì)新用戶,對(duì)老用戶效果不佳D.可以通過分析用戶行為數(shù)據(jù),優(yōu)化網(wǎng)站的頁面布局和流程10、大數(shù)據(jù)系統(tǒng)的性能優(yōu)化是一個(gè)持續(xù)的過程。假設(shè)一個(gè)大數(shù)據(jù)集群在處理查詢時(shí)響應(yīng)時(shí)間較長。以下哪種優(yōu)化策略最有可能提高性能?()A.增加硬件資源,如內(nèi)存和CPUB.優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu),如分區(qū)和索引C.調(diào)整查詢語句,提高查詢效率D.以上策略綜合考慮,根據(jù)具體情況進(jìn)行優(yōu)化11、在大數(shù)據(jù)存儲(chǔ)中,列式存儲(chǔ)和行式存儲(chǔ)各有優(yōu)缺點(diǎn)。假設(shè)一個(gè)數(shù)據(jù)倉庫主要用于大規(guī)模數(shù)據(jù)查詢和分析。以下關(guān)于存儲(chǔ)方式的選擇,正確的是:()A.行式存儲(chǔ),因?yàn)樽x取整行數(shù)據(jù)速度快B.列式存儲(chǔ),能夠提高特定列數(shù)據(jù)的查詢效率C.混合存儲(chǔ),根據(jù)數(shù)據(jù)特點(diǎn)動(dòng)態(tài)選擇存儲(chǔ)方式D.存儲(chǔ)方式對(duì)查詢性能影響不大,可以隨意選擇12、在大數(shù)據(jù)分析中,回歸分析是一種常見的方法。以下關(guān)于回歸分析的描述,哪一個(gè)是不準(zhǔn)確的?()A.回歸分析可以用于預(yù)測連續(xù)型變量的值B.線性回歸是回歸分析中最簡單的形式C.回歸分析只能處理兩個(gè)變量之間的關(guān)系,不能處理多個(gè)變量D.可以通過評(píng)估回歸模型的擬合優(yōu)度來判斷其準(zhǔn)確性13、在處理大規(guī)模的大數(shù)據(jù)集時(shí),常常需要對(duì)數(shù)據(jù)進(jìn)行清洗和預(yù)處理。假設(shè)一個(gè)包含了用戶購物行為的數(shù)據(jù)集,其中存在大量缺失值、重復(fù)數(shù)據(jù)和異常值。以下哪種數(shù)據(jù)清洗方法最適合處理這種情況,同時(shí)能夠最大程度地保留有用信息并提高數(shù)據(jù)質(zhì)量?()A.直接刪除包含缺失值、重復(fù)數(shù)據(jù)和異常值的記錄B.通過統(tǒng)計(jì)方法填充缺失值,去除重復(fù)數(shù)據(jù),并使用聚類算法識(shí)別和處理異常值C.對(duì)缺失值進(jìn)行隨機(jī)填充,保留重復(fù)數(shù)據(jù),忽略異常值D.不進(jìn)行任何處理,直接使用原始數(shù)據(jù)進(jìn)行分析14、在大數(shù)據(jù)的數(shù)據(jù)庫選擇中,NoSQL數(shù)據(jù)庫因其靈活的數(shù)據(jù)模型而受到關(guān)注。假設(shè)一個(gè)應(yīng)用需要存儲(chǔ)大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的讀寫性能要求較高。以下哪種NoSQL數(shù)據(jù)庫最適合?()A.文檔數(shù)據(jù)庫B.鍵值數(shù)據(jù)庫C.列族數(shù)據(jù)庫D.圖數(shù)據(jù)庫15、隨著大數(shù)據(jù)技術(shù)的發(fā)展,新的編程模型不斷涌現(xiàn)。假設(shè)要開發(fā)一個(gè)高效的大數(shù)據(jù)處理應(yīng)用程序。以下哪種編程模型最適合提高開發(fā)效率和程序性能?()A.傳統(tǒng)的面向過程編程B.面向?qū)ο缶幊藽.函數(shù)式編程D.基于特定大數(shù)據(jù)框架的編程模型16、在處理大規(guī)模圖像數(shù)據(jù)時(shí),常常需要進(jìn)行特征提取和分類。假設(shè)有一個(gè)包含數(shù)百萬張圖片的數(shù)據(jù)集,需要快速準(zhǔn)確地識(shí)別圖片中的物體。以下哪種技術(shù)或算法在圖像大數(shù)據(jù)處理中應(yīng)用廣泛?()A.決策樹B.隨機(jī)森林C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯17、在處理大規(guī)模數(shù)據(jù)的關(guān)聯(lián)分析時(shí),Apriori算法是一種經(jīng)典的算法。以下關(guān)于Apriori算法的描述,錯(cuò)誤的是?()A.它通過逐層搜索的方式發(fā)現(xiàn)頻繁項(xiàng)集B.它需要多次掃描數(shù)據(jù)集,計(jì)算效率較低C.它只能發(fā)現(xiàn)布爾型的關(guān)聯(lián)規(guī)則D.它可以自動(dòng)確定關(guān)聯(lián)規(guī)則的置信度閾值18、在大數(shù)據(jù)隱私保護(hù)中,差分隱私是一種常用的技術(shù)。以下關(guān)于差分隱私的描述,哪一項(xiàng)是錯(cuò)誤的?()A.差分隱私通過添加噪聲來保護(hù)數(shù)據(jù)隱私B.差分隱私能夠保證在數(shù)據(jù)查詢結(jié)果中不泄露個(gè)體的敏感信息C.差分隱私的保護(hù)程度與添加的噪聲量成正比D.差分隱私適用于各種類型的數(shù)據(jù)和查詢操作19、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的相關(guān)性和關(guān)系,以下哪種圖表類型通常被使用?()A.相關(guān)矩陣圖B.和弦圖C.?;鶊DD.以上都是20、在大數(shù)據(jù)的存儲(chǔ)中,為了應(yīng)對(duì)數(shù)據(jù)的快速增長,需要考慮可擴(kuò)展性。假設(shè)一個(gè)數(shù)據(jù)量不斷增加的數(shù)據(jù)集,需要選擇一種能夠輕松擴(kuò)展存儲(chǔ)容量的方案。以下哪種存儲(chǔ)架構(gòu)最具有可擴(kuò)展性?()A.縱向擴(kuò)展(ScaleUp)B.橫向擴(kuò)展(ScaleOut)C.混合擴(kuò)展D.以上架構(gòu)都不具有可擴(kuò)展性21、大數(shù)據(jù)存儲(chǔ)系統(tǒng)在處理海量數(shù)據(jù)時(shí)面臨諸多挑戰(zhàn)。假設(shè)一個(gè)企業(yè)需要存儲(chǔ)PB級(jí)別的數(shù)據(jù),并要求具備高可靠性和可擴(kuò)展性。以下哪種存儲(chǔ)架構(gòu)最適合?()A.傳統(tǒng)的關(guān)系型數(shù)據(jù)庫,如MySQLB.分布式文件系統(tǒng),如Hadoop的HDFSC.本地磁盤陣列,通過RAID技術(shù)保障數(shù)據(jù)安全D.云存儲(chǔ)服務(wù),如亞馬遜的S322、在大數(shù)據(jù)存儲(chǔ)方面,有多種選擇,如分布式文件系統(tǒng)、NoSQL數(shù)據(jù)庫、關(guān)系型數(shù)據(jù)庫等。假設(shè)有一個(gè)需要頻繁更新和查詢的數(shù)據(jù)集合,數(shù)據(jù)結(jié)構(gòu)較為復(fù)雜,同時(shí)對(duì)數(shù)據(jù)一致性要求較高。在這種情況下,以下哪種存儲(chǔ)方案可能不太合適?()A.HBase(一種NoSQL數(shù)據(jù)庫)B.MongoDB(一種NoSQL數(shù)據(jù)庫)C.MySQL(關(guān)系型數(shù)據(jù)庫)D.HDFS(分布式文件系統(tǒng))23、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量問題可能導(dǎo)致錯(cuò)誤的分析結(jié)果。假設(shè)一個(gè)數(shù)據(jù)集存在大量噪聲數(shù)據(jù)。以下哪種方法可以減少噪聲的影響?()A.直接刪除含有噪聲的數(shù)據(jù)點(diǎn)B.采用平滑技術(shù)對(duì)噪聲數(shù)據(jù)進(jìn)行處理C.忽略噪聲數(shù)據(jù),只關(guān)注主要的數(shù)據(jù)趨勢(shì)D.增加更多的數(shù)據(jù)來稀釋噪聲的影響24、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行異常檢測,并且數(shù)據(jù)具有多種特征,以下哪種方法可能更適用?()A.基于距離的異常檢測B.基于密度的異常檢測C.基于聚類的異常檢測D.以上都是25、在大數(shù)據(jù)分析中,聚類分析是一種常用的方法。假設(shè)要對(duì)大量的客戶數(shù)據(jù)進(jìn)行聚類,以便更好地了解客戶群體的特征。以下關(guān)于聚類分析的說法,哪一個(gè)是不準(zhǔn)確的?()A.聚類分析可以幫助發(fā)現(xiàn)潛在的客戶細(xì)分群體B.聚類分析需要事先確定聚類的數(shù)量C.不同的聚類算法可能會(huì)產(chǎn)生不同的聚類結(jié)果D.聚類分析的結(jié)果可以為市場營銷策略提供參考26、大數(shù)據(jù)存儲(chǔ)架構(gòu)有很多種,以下關(guān)于大數(shù)據(jù)存儲(chǔ)架構(gòu)的描述中,錯(cuò)誤的是()。A.分布式存儲(chǔ)架構(gòu)可以提高數(shù)據(jù)的存儲(chǔ)容量和可靠性B.云存儲(chǔ)架構(gòu)可以提供靈活的存儲(chǔ)服務(wù)和高可用性C.集中式存儲(chǔ)架構(gòu)適用于大規(guī)模數(shù)據(jù)的存儲(chǔ)和管理D.大數(shù)據(jù)存儲(chǔ)架構(gòu)只需要考慮存儲(chǔ)容量,不需要考慮存儲(chǔ)性能和成本27、在大數(shù)據(jù)處理框架中,Spark支持多種數(shù)據(jù)源的讀取和寫入。假設(shè)有一個(gè)需求是從關(guān)系型數(shù)據(jù)庫中讀取數(shù)據(jù),并在Spark中進(jìn)行處理。以下哪種方式是可行的?()A.使用JDBC連接數(shù)據(jù)庫讀取數(shù)據(jù)B.將數(shù)據(jù)庫中的數(shù)據(jù)導(dǎo)出為CSV文件,再由Spark讀取C.使用ODBC連接數(shù)據(jù)庫讀取數(shù)據(jù)D.Alloftheabove(以上皆是)28、在大數(shù)據(jù)處理中,常常需要對(duì)數(shù)據(jù)進(jìn)行分區(qū)。假設(shè)有一個(gè)大規(guī)模的數(shù)據(jù)集,需要按照某個(gè)字段的值進(jìn)行分區(qū)存儲(chǔ),以便提高查詢效率。以下哪種分區(qū)方式在處理這種數(shù)據(jù)時(shí)可能效果較好?()A.哈希分區(qū)B.范圍分區(qū)C.列表分區(qū)D.Alloftheabove(以上皆是)29、在大數(shù)據(jù)處理框架中,Storm常用于實(shí)時(shí)流處理。以下關(guān)于Storm的特點(diǎn),哪一項(xiàng)是錯(cuò)誤的?()A.支持分布式部署B(yǎng).具有高容錯(cuò)性C.處理數(shù)據(jù)的延遲較低D.不適合處理復(fù)雜的邏輯30、大數(shù)據(jù)技術(shù)在市場營銷領(lǐng)域有廣泛的應(yīng)用。假設(shè)一個(gè)公司想要通過大數(shù)據(jù)精準(zhǔn)定位目標(biāo)客戶。以下哪種數(shù)據(jù)來源對(duì)實(shí)現(xiàn)這一目標(biāo)最為關(guān)鍵?()A.客戶的購買歷史和消費(fèi)金額B.客戶的社交媒體活動(dòng)和興趣愛好C.客戶的人口統(tǒng)計(jì)信息,如年齡、性別、地域D.以上數(shù)據(jù)二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)用Scala實(shí)現(xiàn)一個(gè)程序,處理來自工業(yè)自動(dòng)化生產(chǎn)線的大量產(chǎn)品質(zhì)量檢測數(shù)據(jù)。找出次品率最高的5條生產(chǎn)線,并計(jì)算這些生產(chǎn)線的平均次品率。2、(本題5分)用Java實(shí)現(xiàn)一個(gè)程序,處理一個(gè)包含銀行交易數(shù)據(jù)的大型數(shù)據(jù)集。找出交易金額最大的5個(gè)賬戶,并計(jì)算這些賬戶的總交易金額。3、(本題5分)有一個(gè)包含城市交通擁堵數(shù)據(jù)的文件,使用SQL語句和相關(guān)數(shù)據(jù)庫操作,找出擁堵最嚴(yán)重的路段和對(duì)應(yīng)的擁堵時(shí)間。4、(本題5分)有一個(gè)包含交通違章數(shù)據(jù)的文件,使用SQL語句和相關(guān)數(shù)據(jù)庫操作,找出違章次數(shù)最多的車輛類型和對(duì)應(yīng)的違章次數(shù)。5、(本題5分)給定一個(gè)包含用戶行為數(shù)據(jù)的數(shù)據(jù)集(如瀏覽記錄、購買記錄等),使用數(shù)據(jù)挖掘算法(如關(guān)聯(lián)規(guī)則挖掘),找出用戶行為之間的潛在關(guān)聯(lián)。三、簡答題(本大題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論