版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Agents
Authors:JuliaWiesinger,PatrickMarlowandVladimirVuskovic
Agents
Acknowledgements
ReviewersandContributors
EvanHuangEmilyXue
OlcanSercinogluSebastianRiedelSatinderBaveja
AntonioGulli
AnantNawalgaria
CuratorsandEditors
AntonioGulli
AnantNawalgariaGraceMollison
TechnicalWriter
JoeyHaymaker
Designer
MichaelLanning
September20242
Tableofcontents
Introduction4
Whatisanagent?5
Themodel·6
Thetools·7
Theorchestrationlayer7
Agentsvs.models·8
Cognitivearchitectures:Howagentsoperate··8
Tools:Ourkeystotheoutsideworld12
Extensions··13
SampleExtensions··15
Functions·18
Usecases21
Functionsamplecode24
Datastores·27
Implementationandapplication28
Toolsrecap··32
Enhancingmodelperformancewithtargetedlearning·33
AgentquickstartwithLangChain35
ProductionapplicationswithVertexAIagents38
Summary40
Endnotes42
Agents
Thiscombinationofreasoning,
logic,andaccesstoexternal
informationthatareallconnectedtoaGenerativeAImodelinvokestheconceptofanagent.
Introduction
Humansarefantasticatmessypatternrecognitiontasks.However,theyoftenrelyontools-likebooks,GoogleSearch,oracalculator-tosupplementtheirpriorknowledgebefore
arrivingataconclusion.Justlikehumans,GenerativeAImodelscanbetrainedtousetoolstoaccessreal-timeinformationorsuggestareal-worldaction.Forexample,amodelcan
leverageadatabaseretrievaltooltoaccessspecificinformation,likeacustomer'spurchasehistory,soitcangeneratetailoredshoppingrecommendations.Alternatively,basedona
user'squery,amodelcanmakevariousAPIcallstosendanemailresponsetoacolleagueorcompleteafinancialtransactiononyourbehalf.Todoso,themodelmustnotonlyhaveaccesstoasetofexternaltools,itneedstheabilitytoplanandexecuteanytaskinaself-directedfashion.Thiscombinationofreasoning,logic,andaccesstoexternalinformation
thatareallconnectedtoaGenerativeAImodelinvokestheconceptofanagent,ora
programthatextendsbeyondthestandalonecapabilitiesofaGenerativeAImodel.Thiswhitepaperdivesintoalltheseandassociatedaspectsinmoredetail.
September20244
Agents
Whatisanagent?
Initsmostfundamentalform,aGenerativeAIagentcanbedefinedasanapplicationthat
attemptstoachieveagoalbyobservingtheworldandactinguponitusingthetoolsthatit
hasatitsdisposal.Agentsareautonomousandcanactindependentlyofhumanintervention,especiallywhenprovidedwithpropergoalsorobjectivestheyaremeanttoachieve.Agentscanalsobeproactiveintheirapproachtoreachingtheirgoals.Evenintheabsenceof
explicitinstructionsetsfromahuman,anagentcanreasonaboutwhatitshoulddonexttoachieveitsultimategoal.WhilethenotionofagentsinAIisquitegeneralandpowerful,thiswhitepaperfocusesonthespecifictypesofagentsthatGenerativeAImodelsarecapableofbuildingatthetimeofpublication.
Inordertounderstandtheinnerworkingsofanagent,let’sfirstintroducethefoundationalcomponentsthatdrivetheagent’sbehavior,actions,anddecisionmaking.Thecombinationofthesecomponentscanbedescribedasacognitivearchitecture,andtherearemany
sucharchitecturesthatcanbeachievedbythemixingandmatchingofthesecomponents.Focusingonthecorefunctionalities,therearethreeessentialcomponentsinanagent’s
cognitivearchitectureasshowninFigure1.
September2024s
Agents
Figure1.Generalagentarchitectureandcomponents
Themodel
Inthescopeofanagent,amodelreferstothelanguagemodel(LM)thatwillbeutilizedas
thecentralizeddecisionmakerforagentprocesses.ThemodelusedbyanagentcanbeoneormultipleLM’sofanysize(small/large)thatarecapableoffollowinginstructionbased
reasoningandlogicframeworks,likeReAct,Chain-of-Thought,orTree-of-Thoughts.Modelscanbegeneralpurpose,multimodalorfine-tunedbasedontheneedsofyourspecificagentarchitecture.Forbestproductionresults,youshouldleverageamodelthatbestfitsyour
desiredendapplicationand,ideally,hasbeentrainedondatasignaturesassociatedwiththetoolsthatyouplantouseinthecognitivearchitecture.It’simportanttonotethatthemodelistypicallynottrainedwiththespecificconfigurationsettings(i.e.toolchoices,orchestration/reasoningsetup)oftheagent.However,it’spossibletofurtherrefinethemodelforthe
agent’stasksbyprovidingitwithexamplesthatshowcasetheagent’scapabilities,includinginstancesoftheagentusingspecifictoolsorreasoningstepsinvariouscontexts.
September20246
Agents
Thetools
Foundationalmodels,despitetheirimpressivetextandimagegeneration,remainconstrainedbytheirinabilitytointeractwiththeoutsideworld.Toolsbridgethisgap,empoweringagentstointeractwithexternaldataandserviceswhileunlockingawiderrangeofactionsbeyond
thatoftheunderlyingmodelalone.Toolscantakeavarietyofformsandhavevarying
depthsofcomplexity,buttypicallyalignwithcommonwebAPImethodslikeGET,POST,
PATCH,andDELETE.Forexample,atoolcouldupdatecustomerinformationinadatabaseorfetchweatherdatatoinfluenceatravelrecommendationthattheagentisprovidingtotheuser.Withtools,agentscanaccessandprocessreal-worldinformation.Thisempowers
themtosupportmorespecializedsystemslikeretrievalaugmentedgeneration(RAG),
whichsignificantlyextendsanagent’scapabilitiesbeyondwhatthefoundationalmodelcanachieveonitsown.We’lldiscusstoolsinmoredetailbelow,butthemostimportantthingtounderstandisthattoolsbridgethegapbetweentheagent’sinternalcapabilitiesandtheexternalworld,unlockingabroaderrangeofpossibilities.
Theorchestrationlayer
Theorchestrationlayerdescribesacyclicalprocessthatgovernshowtheagenttakesin
information,performssomeinternalreasoning,andusesthatreasoningtoinformitsnextactionordecision.Ingeneral,thisloopwillcontinueuntilanagenthasreacheditsgoalorastoppingpoint.Thecomplexityoftheorchestrationlayercanvarygreatlydependingontheagentandtaskit’sperforming.Someloopscanbesimplecalculationswithdecisionrules,whileothersmaycontainchainedlogic,involveadditionalmachinelearningalgorithms,orimplementotherprobabilisticreasoningtechniques.We’lldiscussmoreaboutthedetailedimplementationoftheagentorchestrationlayersinthecognitivearchitecturesection.
September20247
Agents
Agentsvs.models
Togainaclearerunderstandingofthedistinctionbetweenagentsandmodels,considerthefollowingchart:
Models
Agents
Knowledgeislimitedtowhatisavailableintheirtrainingdata.
Knowledgeisextendedthroughtheconnectionwithexternalsystemsviatools
Singleinference/predictionbasedonthe
userquery.Unlessexplicitlyimplementedforthemodel,thereisnomanagementofsessionhistoryorcontinuouscontext.(i.e.chathistory)
Managedsessionhistory(i.e.chathistory)to
allowformultiturninference/predictionbasedonuserqueriesanddecisionsmadeinthe
orchestrationlayer.Inthiscontext,a‘turn’is
definedasaninteractionbetweentheinteractingsystemandtheagent.(i.e.1incomingevent/
queryand1agentresponse)
Nonativetoolimplementation.
Toolsarenativelyimplementedinagentarchitecture.
Nonativelogiclayerimplemented.Userscanformpromptsassimplequestionsoruse
reasoningframeworks(CoT,ReAct,etc.)toformcomplexpromptstoguidethemodelin
prediction.
NativecognitivearchitecturethatusesreasoningframeworkslikeCoT,ReAct,orotherpre-built
agentframeworkslikeLangChain.
Cognitivearchitectures:Howagentsoperate
Imagineachefinabusykitchen.Theirgoalistocreatedeliciousdishesforrestaurantpatronswhichinvolvessomecycleofplanning,execution,andadjustment.
September20248
Agents
?Theygatherinformation,likethepatron’sorderandwhatingredientsareinthepantryandrefrigerator.
?Theyperformsomeinternalreasoningaboutwhatdishesandflavorprofilestheycancreatebasedontheinformationtheyhavejustgathered.
?Theytakeactiontocreatethedish:choppingvegetables,blendingspices,searingmeat.
Ateachstageintheprocessthechefmakesadjustmentsasneeded,refiningtheirplanasingredientsaredepletedorcustomerfeedbackisreceived,andusesthesetofprevious
outcomestodeterminethenextplanofaction.Thiscycleofinformationintake,planning,executing,andadjustingdescribesauniquecognitivearchitecturethatthechefemploystoreachtheirgoal.
Justlikethechef,agentscanusecognitivearchitecturestoreachtheirendgoalsby
iterativelyprocessinginformation,makinginformeddecisions,andrefiningnextactions
basedonpreviousoutputs.Atthecoreofagentcognitivearchitecturesliestheorchestrationlayer,responsibleformaintainingmemory,state,reasoningandplanning.Itusestherapidlyevolvingfieldofpromptengineeringandassociatedframeworkstoguidereasoningand
planning,enablingtheagenttointeractmoreeffectivelywithitsenvironmentandcompletetasks.Researchintheareaofpromptengineeringframeworksandtaskplanningfor
languagemodelsisrapidlyevolving,yieldingavarietyofpromisingapproaches.Whilenotanexhaustivelist,theseareafewofthemostpopularframeworksandreasoningtechniquesavailableatthetimeofthispublication:
?ReAct,apromptengineeringframeworkthatprovidesathoughtprocessstrategyfor
languagemodelstoReasonandtakeactiononauserquery,withorwithoutin-context
examples.ReActpromptinghasshowntooutperformseveralSOTAbaselinesandimprovehumaninteroperabilityandtrustworthinessofLLMs.
September20249
Agents
?Chain-of-Thought(CoT),apromptengineeringframeworkthatenablesreasoning
capabilitiesthroughintermediatesteps.Therearevarioussub-techniquesofCoTincludingself-consistency,active-prompt,andmultimodalCoTthateachhavestrengthsand
weaknessesdependingonthespecificapplication.
?Tree-of-thoughts(ToT),,apromptengineeringframeworkthatiswellsuitedfor
explorationorstrategiclookaheadtasks.Itgeneralizesoverchain-of-thoughtpromptingandallowsthemodeltoexplorevariousthoughtchainsthatserveasintermediatestepsforgeneralproblemsolvingwithlanguagemodels.
Agentscanutilizeoneoftheabovereasoningtechniques,ormanyothertechniques,to
choosethenextbestactionforthegivenuserrequest.Forexample,let’sconsideranagentthatisprogrammedtousetheReActframeworktochoosethecorrectactionsandtoolsfortheuserquery.Thesequenceofeventsmightgosomethinglikethis:
1.Usersendsquerytotheagent
2.AgentbeginstheReActsequence
3.Theagentprovidesaprompttothemodel,askingittogenerateoneofthenextReActstepsanditscorrespondingoutput:
a.Question:Theinputquestionfromtheuserquery,providedwiththeprompt
b.Thought:Themodel’sthoughtsaboutwhatitshoulddonext
c.Action:Themodel’sdecisiononwhatactiontotakenexti.Thisiswheretoolchoicecanoccur
ii.Forexample,anactioncouldbeoneof[Flights,Search,Code,None],wherethefirst3representaknowntoolthatthemodelcanchoose,andthelastrepresents“no
toolchoice”
September202410
Agents
d.Actioninput:Themodel’sdecisiononwhatinputstoprovidetothetool(ifany)e.Observation:Theresultoftheaction/actioninputsequence
i.Thisthought/action/actioninput/observationcouldrepeatN-timesasneededf.Finalanswer:Themodel’sfinalanswertoprovidetotheoriginaluserquery
4.TheReActloopconcludesandafinalanswerisprovidedbacktotheuser
Figure2.ExampleagentwithReActreasoningintheorchestrationlayer
AsshowninFigure2,themodel,tools,andagentconfigurationworktogethertoprovideagrounded,conciseresponsebacktotheuserbasedontheuser’soriginalquery.Whilethemodelcouldhaveguessedatananswer(hallucinated)basedonitspriorknowledge,itinsteadusedatool(Flights)tosearchforreal-timeexternalinformation.Thisadditional
informationwasprovidedtothemodel,allowingittomakeamoreinformeddecisionbasedonrealfactualdataandtosummarizethisinformationbacktotheuser.
September202411
Agents
Insummary,thequalityofagentresponsescanbetieddirectlytothemodel’sabilityto
reasonandactaboutthesevarioustasks,includingtheabilitytoselecttherighttools,andhowwellthattoolshasbeendefined.Likeachefcraftingadishwithfreshingredientsandattentivetocustomerfeedback,agentsrelyonsoundreasoningandreliableinformationtodeliveroptimalresults.Inthenextsection,we’lldiveintothevariouswaysagentsconnectwithfreshdata.
Tools:Ourkeystotheoutsideworld
Whilelanguagemodelsexcelatprocessinginformation,theylacktheabilitytodirectly
perceiveandinfluencetherealworld.Thislimitstheirusefulnessinsituationsrequiring
interactionwithexternalsystemsordata.Thismeansthat,inasense,alanguagemodel
isonlyasgoodaswhatithaslearnedfromitstrainingdata.Butregardlessofhowmuch
datawethrowatamodel,theystilllackthefundamentalabilitytointeractwiththeoutsideworld.Sohowcanweempowerourmodelstohavereal-time,context-awareinteractionwithexternalsystems?Functions,Extensions,DataStoresandPluginsareallwaystoprovidethiscriticalcapabilitytothemodel.
Whiletheygobymanynames,toolsarewhatcreatealinkbetweenourfoundationalmodelsandtheoutsideworld.Thislinktoexternalsystemsanddataallowsouragenttoperformawidervarietyoftasksanddosowithmoreaccuracyandreliability.Forinstance,toolscanenableagentstoadjustsmarthomesettings,updatecalendars,fetchuserinformationfromadatabase,orsendemailsbasedonaspecificsetofinstructions.
Asofthedateofthispublication,therearethreeprimarytooltypesthatGooglemodelsareabletointeractwith:Extensions,Functions,andDataStores.Byequippingagentswithtools,weunlockavastpotentialforthemtonotonlyunderstandtheworldbutalsoactuponit,
openingdoorstoamyriadofnewapplicationsandpossibilities.
September202412
Agents
Extensions
TheeasiestwaytounderstandExtensionsistothinkofthemasbridgingthegapbetween
anAPIandanagentinastandardizedway,allowingagentstoseamlesslyexecuteAPIs
regardlessoftheirunderlyingimplementation.Let’ssaythatyou’vebuiltanagentwithagoalofhelpingusersbookflights.YouknowthatyouwanttousetheGoogleFlightsAPItoretrieveflightinformation,butyou’renotsurehowyou’regoingtogetyouragenttomakecallstothisAPIendpoint.
Figure3.HowdoAgentsinteractwithExternalAPIs?
Oneapproachcouldbetoimplementcustomcodethatwouldtaketheincominguserquery,parsethequeryforrelevantinformation,thenmaketheAPIcall.Forexample,inaflight
bookingusecaseausermightstate“IwanttobookaflightfromAustintoZurich.”Inthis
scenario,ourcustomcodesolutionwouldneedtoextract“Austin”and“Zurich”asrelevantentitiesfromtheuserquerybeforeattemptingtomaketheAPIcall.Butwhathappensiftheusersays“IwanttobookaflighttoZurich”andneverprovidesadeparturecity?TheAPIcall
wouldfailwithouttherequireddataandmorecodewouldneedtobeimplementedinordertocatchedgeandcornercaseslikethis.Thisapproachisnotscalableandcouldeasilybreakinanyscenariothatfallsoutsideoftheimplementedcustomcode.
September202413
Agents
AmoreresilientapproachwouldbetouseanExtension.AnExtensionbridgesthegapbetweenanagentandanAPIby:
1.TeachingtheagenthowtousetheAPIendpointusingexamples.
2.TeachingtheagentwhatargumentsorparametersareneededtosuccessfullycalltheAPIendpoint.
Figure4.ExtensionsconnectAgentstoExternalAPIs
Extensionscanbecraftedindependentlyoftheagent,butshouldbeprovidedaspartoftheagent’sconfiguration.TheagentusesthemodelandexamplesatruntimetodecidewhichExtension,ifany,wouldbesuitableforsolvingtheuser’squery.ThishighlightsakeystrengthofExtensions,theirbuilt-inexampletypes,thatallowtheagenttodynamicallyselectthe
mostappropriateExtensionforthetask.
Figure5.1-to-manyrelationshipbetweenAgents,ExtensionsandAPIs
September202414
Agents
ThinkofthisthesamewaythatasoftwaredeveloperdecideswhichAPIendpointstousewhilesolvingandsolutioningforauser’sproblem.Iftheuserwantstobookaflight,the
developermightusetheGoogleFlightsAPI.Iftheuserwantstoknowwherethenearest
coffeeshopisrelativetotheirlocation,thedevelopermightusetheGoogleMapsAPI.In
thissameway,theagent/modelstackusesasetofknownExtensionstodecidewhichonewillbethebestfitfortheuser’squery.Ifyou’dliketoseeExtensionsinaction,youcantrythemoutontheGeminiapplicationbygoingtoSettings>Extensionsandthenenablinganyyouwouldliketotest.Forexample,youcouldenabletheGoogleFlightsextensionthenaskGemini“ShowmeflightsfromAustintoZurichleavingnextFriday.”
SampleExtensions
TosimplifytheusageofExtensions,Googleprovidessomeoutoftheboxextensionsthat
canbequicklyimportedintoyourprojectandusedwithminimalconfigurations.Forexample,theCodeInterpreterextensioninSnippet1allowsyoutogenerateandrunPythoncodefromanaturallanguagedescription.
September202415
Agents
Python
importvertexaiimportpprint
PROJECT_ID="YOUR_PROJECT_ID"REGION="us-central1"
vertexai.init(project=PROJECT_ID,location=REGION)
fromvertexai.preview.extensionsimportExtension
extension_code_interpreter=Extension.from_hub("code_interpreter")
CODE_QUERY="""WriteapythonmethodtoinvertabinarytreeinO(n)time."""
response=extension_code_interpreter.execute(
operation_id="generate_and_execute",
operation_params={"query":CODE_QUERY})
print("GeneratedCode:")
pprint.pprint({response['generated_code']})
#Theabovesnippetwillgeneratethefollowingcode.
```
GeneratedCode:classTreeNode:
definit(self,val=0,left=None,right=None):self.val=val
self.left=left
self.right=right
Continuesnextpage...
September202416
Agents
Python
definvert_binary_tree(root):
"""
Invertsabinarytree.Args:
root:Therootofthebinarytree.Returns:
Therootoftheinvertedbinarytree.
"""
ifnotroot:
returnNone
#Swaptheleftandrightchildrenrecursively
root.left,root.right=
invert_binary_tree(root.right),invert_binary_tree(root.left)
returnroot
#Exampleusage:
#Constructasamplebinarytree
root=TreeNode(4)
root.left=TreeNode(2)root.right=TreeNode(7)
root.left.left=TreeNode(1)
root.left.right=TreeNode(3)root.right.left=TreeNode(6)root.right.right=TreeNode(9)
#Invertthebinarytree
inverted_root=invert_binary_tree(root)```
Snippet1.CodeInterpreterExtensioncangenerateandrunPythoncode
September202417
Agents
Tosummarize,Extensionsprovideawayforagentstoperceive,interact,andinfluencetheoutsideworldinamyriadofways.TheselectionandinvocationoftheseExtensionsisguidedbytheuseofExamples,allofwhicharedefinedaspartoftheExtensionconfiguration.
Functions
Intheworldofsoftwareengineering,functionsaredefinedasself-containedmodules
ofcodethataccomplishaspecifictaskandcanbereusedasneeded.Whenasoftwaredeveloperiswritingaprogram,theywilloftencreatemanyfunctionstodovarioustasks.Theywillalsodefinethelogicforwhentocallfunction_aversusfunction_b,aswellastheexpectedinputsandoutputs.
Functionsworkverysimilarlyintheworldofagents,butwecanreplacethesoftware
developerwithamodel.AmodelcantakeasetofknownfunctionsanddecidewhentouseeachFunctionandwhatargumentstheFunctionneedsbasedonitsspecification.FunctionsdifferfromExtensionsinafewways,mostnotably:
1.AmodeloutputsaFunctionanditsarguments,butdoesn’tmakealiveAPIcall.
2.Functionsareexecutedontheclient-side,whileExtensionsareexecutedontheagent-side.
UsingourGoogleFlightsexampleagain,asimplesetupforfunctionsmightlookliketheexampleinFigure7.
September202418
Agents
Figure7.HowdofunctionsinteractwithexternalAPIs?
NotethatthemaindifferencehereisthatneithertheFunctionnortheagentinteractdirectlywiththeGoogleFlightsAPI.SohowdoestheAPIcallactuallyhappen?
Withfunctions,thelogicandexecutionofcallingtheactualAPIendpointisoffloadedawayfromtheagentandbacktotheclient-sideapplicationasseeninFigure8andFigure9below.Thisoffersthedevelopermoregranularcontrolovertheflowofdataintheapplication.There
aremanyreasonswhyaDevelopermightchoosetousefunctionsoverExtensions,butafewcommonusecasesare:
?APIcallsneedtobemadeatanotherlayeroftheapplicationstack,outsideofthedirectagentarchitectureflow(e.g.amiddlewaresystem,afrontendframework,etc.)
?SecurityorAuthenticationrestrictionsthatpreventtheagentfromcallinganAPIdirectly(e.gAPIisnotexposedtotheinternet,ornon-accessiblebyagentinfrastructure)
?Timingororder-of-operationsconstraintsthatpreventtheagentfrommakingAPIcallsinreal-time.(i.e.batchoperations,human-in-the-loopreview,etc.)
September202419
Agents
?AdditionaldatatransformationlogicneedstobeappliedtotheAPIResponsethatthe
agentcannotperform.Forexample,consideranAPIendpointthatdoesn’tprovidea
filteringmechanismforlimitingthenumberofresultsreturned.UsingFunctionsonthe
client-sideprovidesthedeveloperadditionalopportunitiestomakethesetransformations.
?Thedeveloperwantstoiterateonagentdevelopmentwithoutdeployingadditional
infrastructurefortheAPIendpoints(i.e.FunctionCallingcanactlike“stubbing”ofAPIs)
WhilethedifferenceininternalarchitecturebetweenthetwoapproachesissubtleasseeninFigure8,theadditionalcontrolanddecoupleddependencyonexternalinfrastructuremakesFunctionCallinganappealingoptionfortheDeveloper.
Figure8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鋼材品牌授權(quán)及合作推廣合同3篇
- 二零二五版戶外燈具打膠制作合同范本3篇
- 二零二五版建筑材料租賃與資金支付合同3篇
- 二零二五版消防管道材料買賣合同范本3篇
- 二零二五版空壓機(jī)租賃與租賃期滿設(shè)備回收合同3篇
- 二零二五版文化旅游項(xiàng)目開發(fā)合作購銷合同文化融合3篇
- 二零二五版股票期權(quán)授予及解約條款合同書3篇
- 二零二五年度電腦系統(tǒng)集成與售后全面保修合同3篇
- 2025年廠房維修保養(yǎng)與安全責(zé)任合同3篇
- 2025版冷凍食品儲(chǔ)藏租賃合同范本3篇
- 霧化吸入療法合理用藥專家共識(shí)(2024版)解讀
- 寒假作業(yè)(試題)2024-2025學(xué)年五年級(jí)上冊數(shù)學(xué) 人教版(十二)
- 銀行信息安全保密培訓(xùn)
- 市政道路工程交通疏解施工方案
- 2024年部編版初中七年級(jí)上冊歷史:部分練習(xí)題含答案
- 拆遷評(píng)估機(jī)構(gòu)選定方案
- 床旁超聲監(jiān)測胃殘余量
- 上海市松江區(qū)市級(jí)名校2025屆數(shù)學(xué)高一上期末達(dá)標(biāo)檢測試題含解析
- 綜合實(shí)踐活動(dòng)教案三上
- 《新能源汽車電氣設(shè)備構(gòu)造與維修》項(xiàng)目三 新能源汽車照明與信號(hào)系統(tǒng)檢修
- 2024年新課標(biāo)《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》測試題(附含答案)
評(píng)論
0/150
提交評(píng)論