版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年蘇人新版八年級數(shù)學下冊階段測試試卷308考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共8題,共16分)1、如圖,將△ABC繞點C(0,1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)2、如圖,在數(shù)軸上表示2、的對應點分別為C、B,點C是A、B的中點,則點A表示的數(shù)是()A.-B.4-C.-2D.2-3、下列命題不是真命題的是()A.兩直線平行同位角相等B.對頂角相等C.若則D.若則4、下列屬于平移的是(
)
A.電風扇風葉工作B.電梯的升與降C.鐘擺的擺動D.方向盤的轉動5、已知一次函數(shù)y=kx+b中;x取不同值時,y對應的值列表如下:
。x-m2-123y-10n2+1則不等式kx+b>0(其中k,b,m,n為常數(shù))的解集為()A.x>2B.x>3C.x<2D.無法確定6、在△ABC中,∠A=70°,∠B=55°,則△ABC是()A.鈍角三角形B.等腰三角形C.等邊三角形D.等腰直角三角形7、數(shù)學課上,老師讓同學們判斷一個四邊形是否為菱形,下面是某合作小組4位同學擬定的方案,其中正確的是()A.測量對角線是否相等B.測量對角線是否垂直C.測量一組對角是否相等D.測量四邊是否相等8、【題文】計算a6×a3的結果是A.a9B.a2C.a18D.a3評卷人得分二、填空題(共5題,共10分)9、(2013秋?開福區(qū)校級期中)如圖;在△ABC中,BP;CP分別是△ABC的外角∠DBC和∠ECB的平分線;
(1)若∠ABC=20°,∠ACB=80°,則∠BPC=____.
(2)若∠A=70°,則∠BPC=____.
(3)試猜想∠BPC與∠A的數(shù)量關系,并證明你的猜想的正確性.10、=____;=____;=____;=____;=____;=____.11、三角形三邊長分別為,這個三角形的周長是____.12、2x2+4xy+5y2-4x+2y-5可取得的最小值為____.13、(2010春?云夢縣期末)如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=交于A,B兩點,且A,B兩點的橫坐標分別為-1,3,則滿足y2<y1的x的取值范圍是____.評卷人得分三、判斷題(共9題,共18分)14、3x-2=.____.(判斷對錯)15、無意義.____(判斷對錯)16、若x>y,則xz>yz.____.(判斷對錯)17、正數(shù)的平方根有兩個,它們是互為相反數(shù)____18、判斷:菱形的對角線互相垂直平分.()19、0和負數(shù)沒有平方根.()20、(a+3)(a-3)=a2-9____.(判斷對錯)21、等腰三角形底邊中線是等腰三角形的對稱軸.22、()評卷人得分四、其他(共1題,共3分)23、一幢辦公大樓共有9層,每層有12個辦公室,其中201表示2樓的第1個辦公室,那么511表示____樓的第____個辦公室.評卷人得分五、解答題(共2題,共14分)24、如圖,已知直線l1∥l2,直線l3和直線l1,l2交于點C和D,點P在直線l3上;
(1)若點P在C;D兩點之間運動,∠PAC,∠APB,∠PBD之間的關系是否發(fā)生變化,若不變請求出它們之間的關系;
(2)若點P在C;D兩點的外側運動(點P與點C,D不重合),則∠PAC,∠APB;
∠PBD之間的關系又如何?25、一個多邊形的對角線的條數(shù)是它邊數(shù)的3倍,求這個多邊形的內角和.參考答案一、選擇題(共8題,共16分)1、D【分析】【分析】設點A′的坐標是(x,y),根據(jù)旋轉變換的對應點關于旋轉中心對稱,再根據(jù)中點公式列式求解即可.【解析】【解答】解:根據(jù)題意;點A;A′關于點C對稱;
設點A′的坐標是(x;y);
則=0,=1;
解得x=-a,y=-b+2;
∴點A′的坐標是(-a,-b+2).
故選:D.2、B【分析】【分析】數(shù)軸上的點與實數(shù)一一對應,根據(jù)C是A、B的中點,可得CB=CA,用C點表示的數(shù)減去CB的距離,可得A點表示的數(shù).【解析】【解答】解:∵點C是A;B的中點;
∴CB=CA=-2;
∴點A表示的數(shù)是:2-(-2)=4-;
故選:B.3、D【分析】【解析】試題分析:A選項,“兩直線平行同位角相等”是真命題B選項,“對頂角相等”是真命題C選項,“若則”是真命題D選項,根據(jù)不等式的性質:不等式的左右兩邊同除以一個負數(shù),不等號的方向改變。則“若則”是假命題考點:命題與定理【解析】【答案】D4、B【分析】解:根據(jù)平移的概念可知B
是平移;ACD
是旋轉.
故選:B
.
根據(jù)平移概念;將圖形上的所有點都按照某一個方向做相同距離的移動叫平移,可以直接得出答案.
此題主要考查了平移的概念,正確的應用平移概念是解決問題的關鍵.【解析】B
5、A【分析】【分析】直接利用已知表格中數(shù)據(jù)得出:x=2時,y=0,進而得出不等式kx+b>0(其中k,b,m,n為常數(shù))的解集.【解析】【解答】解:由表格可得:x=2時,y=0,由n2+1>0;
則x>2時,不等式kx+b>0(其中k,b;m,n為常數(shù)).
故選:A.6、B【分析】【分析】根據(jù)三角形的內角和定理求得∠C=180°-∠A-∠B=55°,于是得到∠B=∠C,即可得到結論.【解析】【解答】解:∵在△ABC中;∠A=70°,∠B=55°;
∴∠C=180°-∠A-∠B=55°;
∴∠B=∠C;
∴△ABC是等腰三角形.
故選B.7、D【分析】【分析】根據(jù)菱形的判定定理分別進行解答即可得出答案.菱形的判定定理有:(1)鄰邊相等的平行四邊形是菱形;(2)四條邊都相等的四邊形是菱形;(3)對角線互相垂直的平行四邊形的四邊形是菱形.【解析】【解答】解:A;對角線是否相等;只能判定矩形或等腰梯形;
B;對角線是否垂直不能判定形狀;
C;一組對角是否都相等;不能判定形狀;
D;其中四邊形的四條邊都相等;能判定菱形.
故選D.8、A【分析】【解析】
試題分析::原式=a6+3=a9.
故選:A.
考點:同底數(shù)冪的乘法.【解析】【答案】A.二、填空題(共5題,共10分)9、略
【分析】【分析】(1)先根據(jù)∠ABC=20°;∠ACB=80°得出∠DBC與∠BCE的度數(shù),再根據(jù)BP;CP分別是△ABC的外角∠DBC和∠ECB的平分線得出∠PBC與∠PCB的度數(shù),再根據(jù)三角形內角和定理即可得出∠BPC的度數(shù);
(2)由角平分線的定義及三角形的一個外角等于與它不相鄰的兩個內角的和,得∠BCP=∠BCE=(∠A+∠CBA),∠CBP=∠CBD=(∠A+∠ACB);所以∠BCP+∠CBP=∠A+(∠CBA+∠ACB);進而利用三角形的內角和定理求解;
(3)根據(jù)(1)、(2)的證明即可得出結論.【解析】【解答】解:(1)∵∠ABC=20°;∠ACB=80°;
∴∠DBC=180°-20°=160°;∠BCE=180°-80°=100°;
∵BP;CP分別是△ABC的外角∠DBC和∠ECB的平分線;
∴∠PBC=∠DBC=80°,∠PCB=∠BDE=50°;
∴∠BPC=180°-80°-50°=50°.
故答案為:50°;
(2)∵∠BCP=∠BCE=(∠A+∠CBA),∠CBP=∠CBD=(∠A+∠ACB);
∴∠BCP+∠CBP=∠A+(∠CBA+∠ACB);
又∵∠BCP+∠CBP=180°-∠BPC;∠CBA+∠ACB=180°-∠A;
∴180°-∠BCP=∠A+(180°-∠A);
∵∠A=70°;
∴∠BPC=55°.
故答案為:55°;
(3)猜想:∠A=180°-2∠BPC.
同(2)可得,180°-∠BCP=∠A+(180°-∠A);
即∠A=180°-2∠BPC.10、略
【分析】【分析】根據(jù)平方根、算術平方根、立方根定義求出即可.【解析】【解答】解:±=±6,=0.1,()2=5,=16,=-4,=5;
故答案為:±6,0.1,5,16,-4,5.11、略
【分析】【分析】首先化簡各二次根式進而求出三角形的周長.【解析】【解答】解:∵=2,=3,=4;
∴2+3+4=9.
故答案為:9.12、略
【分析】【分析】首先將原式配方得:2x2+4xy+5y2-4x+2y-5=(x-2)2+(x+2y)2+(y+1)2-10,再由完全平方式的非負性即可求得其最小值.【解析】【解答】解:∵2x2+4xy+5y2-4x+2y-3=(x2-4x+4)+(x2+4xy+4y2)+(y2+2y+1)-10=(x-2)2+(x+2y)2+(y+1)2-10;
∵(x-2)2≥0,(x+2y)2≥0,(y+1)2≥0;
∴當x=2,y=-1時,2x2+4xy+5y2-4x+2y-5最小;
最小值為:(x-2)2+(x+2y)2+(y+1)2-10=-10.
故答案為-10.13、略
【分析】【分析】觀察函數(shù)圖象,取反比例函數(shù)圖象位于一次函數(shù)圖象下方時對應的x的取值范圍即可.【解析】【解答】解:∵一次函數(shù)y1=kx+b與反比例函數(shù)y2=交于A;B兩點,且A,B兩點的橫坐標分別為-1,3;
故滿足y2<y1的x的取值范圍是x<-1或0<x<3.三、判斷題(共9題,共18分)14、×【分析】【分析】根據(jù)分式有意義的條件進而得出.【解析】【解答】解:當3x+2≠0時,3x-2=;
∴原式錯誤.
故答案為:×.15、×【分析】【分析】根據(jù)二次根式有意義的條件可得當-a≥0,有意義.【解析】【解答】解:當-a≥0,即a≤0時,有意義;
故答案為:×.16、×【分析】【分析】不等式兩邊加或減某個數(shù)或式子,乘或除以同一個正數(shù),不等號的方向不變;不等式兩邊乘或除以一個負數(shù),不等號的方向改變.依此即可作出判斷.【解析】【解答】解:當z<0時;若x>y,則xz<yz.
故答案為:×.17、√【分析】【分析】根據(jù)平方根的定義及性質即可解決問題.【解析】【解答】解:一個正數(shù)有兩個平方根;它們互為相反數(shù).
故答案為:√.18、√【分析】【解析】試題分析:根據(jù)菱形的性質即可判斷.菱形的對角線互相垂直平分,本題正確.考點:本題考查的是菱形的性質【解析】【答案】對19、×【分析】【解析】試題分析:根據(jù)平方根的定義即可判斷.0的平方根是0,故本題錯誤.考點:本題考查的是平方根【解析】【答案】錯20、√【分析】【分析】原式利用平方差公式化簡得到結果,即可做出判斷【解析】【解答】解:(a+3)(a-3)=a2-32=a2-9;故計算正確.
故答案為:√.21、×【分析】【解析】試題分析:根據(jù)對稱軸的定義即可判斷。等腰三角形底邊中線是一條線段,而對稱軸是一條直線,準確說法應為等腰三角形底邊中線所在的直線是等腰三角形的對稱軸,故本題錯誤??键c:本題考查的是等腰三角形的對稱軸【解析】【答案】錯22、×【分析】本題考查的是分式的性質根據(jù)分式的性質即可得到結論。故本題錯誤?!窘馕觥俊敬鸢浮俊了摹⑵渌?共1題,共3分)23、略
【分析】【分析】根據(jù)201表示2樓的第1個辦公室,可理解為(2,01)是一個有序數(shù)對,前邊數(shù)表示樓層,后面數(shù)表示辦公室序號.據(jù)此解答511即可.【解析】【解答】解:∵201表示2樓的第1個辦公室;
∴511表示5的第11辦公室.
故答案為:5,11.五、解答題(共2題,共14分)24、略
【分析】【分析】(1)當P點在C、D之間運動時,首先過點P作PE∥l1,由l1∥l2,可得PE∥l2∥l1;根據(jù)兩直線平行,內錯角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)當點P在C、D兩點的外側運動時,由直線l1∥l2,根據(jù)兩直線平行,同位角相等與三角形外角的性質,即可求得:∠PBD=∠PAC+∠APB.【解析】【解答】解:(1)如圖①;當P點在C;D之間運動時,∠APB=∠PAC+∠PBD.
理由如下:
過點P作PE∥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬科版九年級地理下冊階段測試試卷含答案
- 2025年新科版必修2歷史下冊月考試卷
- 二零二五版模具維修與翻新服務合同4篇
- 二零二五年度智慧城市建設年薪制合同4篇
- 2025年度養(yǎng)老康復派遣員工康復治療合同4篇
- 2025年度面包烘焙原料綠色認證采購合同3篇
- 2025年度設施農業(yè)專用化肥農藥定制配送合同4篇
- 2024版離婚債務解決方案合同范例一
- 二零二五年度煤炭期貨交易居間代理合同3篇
- 2025年度農業(yè)科技園區(qū)建設與管理合同范例4篇
- 撂荒地整改協(xié)議書范本
- 國際貿易地理 全套課件
- GB/T 20878-2024不銹鋼牌號及化學成分
- 診所負責人免責合同范本
- 2024患者十大安全目標
- 印度與阿拉伯的數(shù)學
- 會陰切開傷口裂開的護理查房
- 實驗報告·測定雞蛋殼中碳酸鈣的質量分數(shù)
- 部編版小學語文五年級下冊集體備課教材分析主講
- 電氣設備建筑安裝施工圖集
- 《工程結構抗震設計》課件 第10章-地下建筑抗震設計
評論
0/150
提交評論